ladybird/Userland/Applications/Piano/Track.cpp

368 lines
10 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2019-2020, William McPherson <willmcpherson2@gmail.com>
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Track.h"
#include <AK/Math.h>
2020-04-15 17:51:53 +03:00
#include <AK/NumericLimits.h>
#include <LibAudio/Loader.h>
#include <math.h>
Track::Track(const u32& time)
: m_time(time)
{
set_volume(volume_max);
2020-02-05 10:20:10 +03:00
set_sustain_impl(1000);
set_attack(5);
set_decay(1000);
set_release(5);
}
Track::~Track()
{
}
void Track::fill_sample(Sample& sample)
{
Audio::Frame new_sample;
for (size_t note = 0; note < note_count; ++note) {
if (!m_roll_iterators[note].is_end()) {
if (m_roll_iterators[note]->on_sample == m_time) {
set_note(note, On);
} else if (m_roll_iterators[note]->off_sample == m_time) {
set_note(note, Off);
++m_roll_iterators[note];
if (m_roll_iterators[note].is_end())
m_roll_iterators[note] = m_roll_notes[note].begin();
2020-02-05 07:13:04 +03:00
}
}
switch (m_envelope[note]) {
case Done:
continue;
case Attack:
m_power[note] += m_attack_step;
if (m_power[note] >= 1) {
m_power[note] = 1;
m_envelope[note] = Decay;
}
break;
case Decay:
m_power[note] -= m_decay_step;
if (m_power[note] < m_sustain_level)
m_power[note] = m_sustain_level;
break;
case Release:
m_power[note] -= m_release_step[note];
if (m_power[note] <= 0) {
m_power[note] = 0;
m_envelope[note] = Done;
continue;
}
break;
default:
VERIFY_NOT_REACHED();
}
Audio::Frame note_sample;
switch (m_wave) {
case Wave::Sine:
note_sample = sine(note);
break;
case Wave::Saw:
note_sample = saw(note);
break;
case Wave::Square:
note_sample = square(note);
break;
case Wave::Triangle:
note_sample = triangle(note);
break;
case Wave::Noise:
note_sample = noise(note);
break;
case Wave::RecordedSample:
note_sample = recorded_sample(note);
break;
default:
VERIFY_NOT_REACHED();
}
new_sample.left += note_sample.left * m_power[note] * volume_factor * (static_cast<double>(volume()) / volume_max);
new_sample.right += note_sample.right * m_power[note] * volume_factor * (static_cast<double>(volume()) / volume_max);
}
if (m_delay) {
new_sample.left += m_delay_buffer[m_delay_index].left * 0.333333;
new_sample.right += m_delay_buffer[m_delay_index].right * 0.333333;
m_delay_buffer[m_delay_index].left = new_sample.left;
m_delay_buffer[m_delay_index].right = new_sample.right;
if (++m_delay_index >= m_delay_samples)
m_delay_index = 0;
}
sample.left += new_sample.left;
sample.right += new_sample.right;
}
void Track::reset()
{
memset(m_delay_buffer.data(), 0, m_delay_buffer.size() * sizeof(Sample));
m_delay_index = 0;
memset(m_note_on, 0, sizeof(m_note_on));
memset(m_power, 0, sizeof(m_power));
memset(m_envelope, 0, sizeof(m_envelope));
for (size_t note = 0; note < note_count; ++note)
m_roll_iterators[note] = m_roll_notes[note].begin();
}
String Track::set_recorded_sample(const StringView& path)
{
NonnullRefPtr<Audio::Loader> loader = Audio::Loader::create(path);
if (loader->has_error())
return String(loader->error_string());
auto buffer = loader->get_more_samples(60 * sample_rate * sizeof(Sample)); // 1 minute maximum
if (!m_recorded_sample.is_empty())
m_recorded_sample.clear();
m_recorded_sample.resize(buffer->sample_count());
double peak = 0;
for (int i = 0; i < buffer->sample_count(); ++i) {
double left_abs = fabs(buffer->samples()[i].left);
double right_abs = fabs(buffer->samples()[i].right);
if (left_abs > peak)
peak = left_abs;
if (right_abs > peak)
peak = right_abs;
}
if (peak) {
for (int i = 0; i < buffer->sample_count(); ++i) {
m_recorded_sample[i].left = buffer->samples()[i].left / peak;
m_recorded_sample[i].right = buffer->samples()[i].right / peak;
}
}
return String::empty();
}
// All of the information for these waves is on Wikipedia.
Audio::Frame Track::sine(size_t note)
{
double pos = note_frequencies[note] / sample_rate;
double sin_step = pos * 2 * M_PI;
double w = sin(m_pos[note]);
m_pos[note] += sin_step;
return w;
}
Audio::Frame Track::saw(size_t note)
{
double saw_step = note_frequencies[note] / sample_rate;
double t = m_pos[note];
double w = (0.5 - (t - floor(t))) * 2;
m_pos[note] += saw_step;
return w;
}
Audio::Frame Track::square(size_t note)
{
double pos = note_frequencies[note] / sample_rate;
double square_step = pos * 2 * M_PI;
double w = AK::sin(m_pos[note]) >= 0 ? 1 : -1;
m_pos[note] += square_step;
return w;
}
Audio::Frame Track::triangle(size_t note)
{
double triangle_step = note_frequencies[note] / sample_rate;
double t = m_pos[note];
double w = AK::fabs(AK::fmod((4 * t) + 1, 4.) - 2) - 1.;
m_pos[note] += triangle_step;
return w;
}
Audio::Frame Track::noise(size_t note)
{
double step = note_frequencies[note] / sample_rate;
// m_pos keeps track of the time since the last random sample
m_pos[note] += step;
if (m_pos[note] > 0.05) {
double random_percentage = static_cast<double>(rand()) / RAND_MAX;
m_last_w[note] = (random_percentage * 2) - 1;
m_pos[note] = 0;
}
return m_last_w[note];
}
Audio::Frame Track::recorded_sample(size_t note)
{
int t = m_pos[note];
if (t >= static_cast<int>(m_recorded_sample.size()))
return 0;
double w_left = m_recorded_sample[t].left;
double w_right = m_recorded_sample[t].right;
if (t + 1 < static_cast<int>(m_recorded_sample.size())) {
double t_fraction = m_pos[note] - t;
2020-02-09 15:19:48 +03:00
w_left += (m_recorded_sample[t + 1].left - m_recorded_sample[t].left) * t_fraction;
w_right += (m_recorded_sample[t + 1].right - m_recorded_sample[t].right) * t_fraction;
}
double recorded_sample_step = note_frequencies[note] / middle_c;
m_pos[note] += recorded_sample_step;
2020-02-09 15:19:48 +03:00
return { w_left, w_right };
}
static inline double calculate_step(double distance, int milliseconds)
{
if (milliseconds == 0)
return distance;
constexpr double samples_per_millisecond = sample_rate / 1000.0;
double samples = milliseconds * samples_per_millisecond;
double step = distance / samples;
return step;
}
void Track::set_note(int note, Switch switch_note)
{
VERIFY(note >= 0 && note < note_count);
if (switch_note == On) {
if (m_note_on[note] == 0) {
m_pos[note] = 0;
2020-02-05 07:13:04 +03:00
m_envelope[note] = Attack;
}
++m_note_on[note];
} else {
if (m_note_on[note] >= 1) {
2020-02-05 07:13:04 +03:00
if (m_note_on[note] == 1) {
m_release_step[note] = calculate_step(m_power[note], m_release);
m_envelope[note] = Release;
2020-02-05 07:13:04 +03:00
}
--m_note_on[note];
}
}
VERIFY(m_note_on[note] != NumericLimits<u8>::max());
VERIFY(m_power[note] >= 0);
}
void Track::sync_roll(int note)
{
auto it = m_roll_notes[note].find_if([&](auto& roll_note) { return roll_note.off_sample > m_time; });
if (it.is_end())
m_roll_iterators[note] = m_roll_notes[note].begin();
else
m_roll_iterators[note] = it;
}
void Track::set_roll_note(int note, u32 on_sample, u32 off_sample)
{
RollNote new_roll_note = { on_sample, off_sample };
VERIFY(note >= 0 && note < note_count);
VERIFY(new_roll_note.off_sample < roll_length);
VERIFY(new_roll_note.length() >= 2);
for (auto it = m_roll_notes[note].begin(); !it.is_end();) {
if (it->on_sample > new_roll_note.off_sample) {
m_roll_notes[note].insert_before(it, new_roll_note);
sync_roll(note);
return;
}
if (it->on_sample <= new_roll_note.on_sample && it->off_sample >= new_roll_note.on_sample) {
if (m_time >= it->on_sample && m_time <= it->off_sample)
set_note(note, Off);
it.remove(m_roll_notes[note]);
sync_roll(note);
return;
}
if ((new_roll_note.on_sample == 0 || it->on_sample >= new_roll_note.on_sample - 1) && it->on_sample <= new_roll_note.off_sample) {
if (m_time >= new_roll_note.off_sample && m_time <= it->off_sample)
set_note(note, Off);
it.remove(m_roll_notes[note]);
it = m_roll_notes[note].begin();
continue;
}
++it;
}
m_roll_notes[note].append(new_roll_note);
sync_roll(note);
}
void Track::set_wave(int wave)
{
VERIFY(wave >= first_wave && wave <= last_wave);
m_wave = wave;
}
void Track::set_wave(Direction direction)
{
if (direction == Up) {
if (++m_wave > last_wave)
m_wave = first_wave;
} else {
if (--m_wave < first_wave)
m_wave = last_wave;
}
}
void Track::set_volume(int volume)
{
VERIFY(volume >= 0);
m_volume = volume;
}
void Track::set_attack(int attack)
2020-02-05 07:13:04 +03:00
{
VERIFY(attack >= 0);
2020-02-05 07:13:04 +03:00
m_attack = attack;
m_attack_step = calculate_step(1, m_attack);
}
void Track::set_decay(int decay)
{
VERIFY(decay >= 0);
m_decay = decay;
2020-02-04 18:39:51 +03:00
m_decay_step = calculate_step(1 - m_sustain_level, m_decay);
}
void Track::set_sustain_impl(int sustain)
2020-02-04 18:39:51 +03:00
{
VERIFY(sustain >= 0);
2020-02-04 18:39:51 +03:00
m_sustain = sustain;
m_sustain_level = sustain / 1000.0;
}
void Track::set_sustain(int sustain)
2020-02-04 18:39:51 +03:00
{
set_sustain_impl(sustain);
set_decay(m_decay);
}
void Track::set_release(int release)
{
VERIFY(release >= 0);
m_release = release;
}
void Track::set_delay(int delay)
{
VERIFY(delay >= 0);
m_delay = delay;
m_delay_samples = m_delay == 0 ? 0 : (sample_rate / (beats_per_minute / 60)) / m_delay;
m_delay_buffer.resize(m_delay_samples);
memset(m_delay_buffer.data(), 0, m_delay_buffer.size() * sizeof(Sample));
m_delay_index = 0;
}