mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-11 01:06:01 +03:00
203 lines
6.3 KiB
C
203 lines
6.3 KiB
C
|
/*
|
||
|
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
* list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
|
||
|
|
||
|
//#define NT_DEBUG
|
||
|
|
||
|
namespace Crypto {
|
||
|
namespace NumberTheory {
|
||
|
static auto ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b) -> UnsignedBigInteger
|
||
|
{
|
||
|
if (b == 1)
|
||
|
return { 1 };
|
||
|
|
||
|
auto a = a_;
|
||
|
auto u = a;
|
||
|
if (a.words()[0] % 2 == 0)
|
||
|
u = u.add(b);
|
||
|
|
||
|
auto v = b;
|
||
|
auto x = UnsignedBigInteger { 0 };
|
||
|
auto d = b.sub(1);
|
||
|
|
||
|
while (!(v == 1)) {
|
||
|
while (v < u) {
|
||
|
u = u.sub(v);
|
||
|
d = d.add(x);
|
||
|
while (u.words()[0] % 2 == 0) {
|
||
|
if (d.words()[0] % 2 == 1) {
|
||
|
d = d.add(b);
|
||
|
}
|
||
|
u = u.divide(2).quotient;
|
||
|
d = d.divide(2).quotient;
|
||
|
}
|
||
|
}
|
||
|
v = v.sub(u);
|
||
|
x = x.add(d);
|
||
|
while (v.words()[0] % 2 == 0) {
|
||
|
if (x.words()[0] % 2 == 1) {
|
||
|
x = x.add(b);
|
||
|
}
|
||
|
v = v.divide(2).quotient;
|
||
|
x = x.divide(2).quotient;
|
||
|
}
|
||
|
}
|
||
|
return x.divide(b).remainder;
|
||
|
}
|
||
|
|
||
|
static auto ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m) -> UnsignedBigInteger
|
||
|
{
|
||
|
if (m == 1)
|
||
|
return 0;
|
||
|
|
||
|
UnsignedBigInteger ep { e };
|
||
|
UnsignedBigInteger base { b };
|
||
|
UnsignedBigInteger exp { 1 };
|
||
|
|
||
|
while (!(ep < 1)) {
|
||
|
#ifdef NT_DEBUG
|
||
|
dbg() << ep.to_base10();
|
||
|
#endif
|
||
|
if (ep.words()[0] % 2 == 1) {
|
||
|
exp = exp.multiply(base).divide(m).remainder;
|
||
|
}
|
||
|
ep = ep.divide(2).quotient;
|
||
|
base = base.multiply(base).divide(m).remainder;
|
||
|
}
|
||
|
return exp;
|
||
|
}
|
||
|
|
||
|
static auto GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b) -> UnsignedBigInteger
|
||
|
{
|
||
|
UnsignedBigInteger a_ { a }, b_ { b };
|
||
|
for (;;) {
|
||
|
if (a_ == 0)
|
||
|
return b_;
|
||
|
b_ = b_.divide(a_).remainder;
|
||
|
if (b_ == 0)
|
||
|
return a_;
|
||
|
a_ = a_.divide(b_).remainder;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static auto LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b) -> UnsignedBigInteger
|
||
|
{
|
||
|
auto temp = GCD(a, b);
|
||
|
|
||
|
auto div = a.divide(temp);
|
||
|
|
||
|
#ifdef NT_DEBUG
|
||
|
dbg() << "quot: " << div.quotient << " rem: " << div.remainder;
|
||
|
#endif
|
||
|
return temp == 0 ? 0 : (a.divide(temp).quotient.multiply(b));
|
||
|
}
|
||
|
|
||
|
template <size_t test_count>
|
||
|
static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, test_count>& tests)
|
||
|
{
|
||
|
auto prev = n.sub({ 1 });
|
||
|
auto b = prev;
|
||
|
auto r = 0;
|
||
|
|
||
|
auto div_result = b.divide(2);
|
||
|
while (div_result.quotient == 0) {
|
||
|
div_result = b.divide(2);
|
||
|
b = div_result.quotient;
|
||
|
++r;
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < tests.size(); ++i) {
|
||
|
auto return_ = true;
|
||
|
if (n < tests[i])
|
||
|
continue;
|
||
|
auto x = ModularPower(tests[i], b, n);
|
||
|
if (x == 1 || x == prev)
|
||
|
continue;
|
||
|
for (auto d = r - 1; d != 0; --d) {
|
||
|
x = ModularPower(x, 2, n);
|
||
|
if (x == 1)
|
||
|
return false;
|
||
|
if (x == prev) {
|
||
|
return_ = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (return_)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max)
|
||
|
{
|
||
|
ASSERT(min < max);
|
||
|
auto range = max.minus(min);
|
||
|
UnsignedBigInteger base;
|
||
|
// FIXME: Need a cryptographically secure rng
|
||
|
auto size = range.trimmed_length() * sizeof(u32);
|
||
|
u8 buf[size];
|
||
|
arc4random_buf(buf, size);
|
||
|
Vector<u32> vec;
|
||
|
for (size_t i = 0; i < size / sizeof(u32); ++i) {
|
||
|
vec.append(*(u32*)buf + i);
|
||
|
}
|
||
|
UnsignedBigInteger offset { move(vec) };
|
||
|
return offset.add(min);
|
||
|
}
|
||
|
|
||
|
static bool is_probably_prime(const UnsignedBigInteger& p)
|
||
|
{
|
||
|
if (p == 2 || p == 3 || p == 5)
|
||
|
return true;
|
||
|
if (p < 49)
|
||
|
return true;
|
||
|
|
||
|
Vector<UnsignedBigInteger, 256> tests;
|
||
|
UnsignedBigInteger seven { 7 };
|
||
|
for (size_t i = 0; i < tests.size(); ++i)
|
||
|
tests.append(random_number(seven, p.sub(2)));
|
||
|
|
||
|
return MR_primality_test(p, tests);
|
||
|
}
|
||
|
|
||
|
static UnsignedBigInteger random_big_prime(size_t bits)
|
||
|
{
|
||
|
ASSERT(bits >= 33);
|
||
|
UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
|
||
|
UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).sub(1);
|
||
|
for (;;) {
|
||
|
auto p = random_number(min, max);
|
||
|
if (is_probably_prime(p))
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|