ladybird/Kernel/Storage/StorageManagement.cpp

297 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <AK/UUID.h>
Kernel/PCI: Simplify the entire subsystem A couple of things were changed: 1. Semantic changes - PCI segments are now called PCI domains, to better match what they are really. It's also the name that Linux gave, and it seems that Wikipedia also uses this name. We also remove PCI::ChangeableAddress, because it was used in the past but now it's no longer being used. 2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as they made a bunch of unnecessary complexity. Instead, Windowed access is removed entirely (this was tested, but never was benchmarked), so we are left with IO access and memory access options. The memory access option is essentially mapping the PCI bus (from the chosen PCI domain), to virtual memory as-is. This means that unless needed, at any time, there is only one PCI bus being mapped, and this is changed if access to another PCI bus in the same PCI domain is needed. For now, we don't support mapping of different PCI buses from different PCI domains at the same time, because basically it's still a non-issue for most machines out there. 2. OOM-safety is increased, especially when constructing the Access object. It means that we pre-allocating any needed resources, and we try to find PCI domains (if requested to initialize memory access) after we attempt to construct the Access object, so it's possible to fail at this point "gracefully". 3. All PCI API functions are now separated into a different header file, which means only "clients" of the PCI subsystem API will need to include that header file. 4. Functional changes - we only allow now to enumerate the bus after a hardware scan. This means that the old method "enumerate_hardware" is removed, so, when initializing an Access object, the initializing function must call rescan on it to force it to find devices. This makes it possible to fail rescan, and also to defer it after construction from both OOM-safety terms and hotplug capabilities.
2021-09-07 12:08:38 +03:00
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Controller/VolumeManagementDevice.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/BlockDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/Panic.h>
#include <Kernel/Storage/ATA/AHCIController.h>
#include <Kernel/Storage/ATA/IDEController.h>
#include <Kernel/Storage/NVMe/NVMeController.h>
#include <Kernel/Storage/Partition/EBRPartitionTable.h>
#include <Kernel/Storage/Partition/GUIDPartitionTable.h>
#include <Kernel/Storage/Partition/MBRPartitionTable.h>
2021-01-20 00:33:00 +03:00
#include <Kernel/Storage/RamdiskController.h>
#include <Kernel/Storage/StorageManagement.h>
namespace Kernel {
static Singleton<StorageManagement> s_the;
static Atomic<u32> s_device_minor_number;
static constexpr StringView partition_uuid_prefix = "PARTUUID:"sv;
UNMAP_AFTER_INIT StorageManagement::StorageManagement()
{
}
void StorageManagement::remove_device(StorageDevice& device)
{
m_storage_devices.remove(device);
}
bool StorageManagement::boot_argument_contains_partition_uuid()
{
return m_boot_argument.starts_with(partition_uuid_prefix);
}
UNMAP_AFTER_INIT void StorageManagement::enumerate_controllers(bool force_pio)
{
VERIFY(m_controllers.is_empty());
using SubclassID = PCI::MassStorage::SubclassID;
if (!kernel_command_line().disable_physical_storage()) {
PCI::enumerate([&](PCI::DeviceIdentifier const& device_identifier) {
if (device_identifier.class_code().value() != to_underlying(PCI::ClassID::MassStorage)) {
return;
}
{
static constexpr PCI::HardwareID vmd_device = { 0x8086, 0x9a0b };
if (device_identifier.hardware_id() == vmd_device) {
auto controller = PCI::VolumeManagementDevice::must_create(device_identifier);
PCI::Access::the().add_host_controller_and_enumerate_attached_devices(move(controller), [this](PCI::DeviceIdentifier const& device_identifier) -> void {
auto subclass_code = static_cast<SubclassID>(device_identifier.subclass_code().value());
if (subclass_code == SubclassID::NVMeController) {
auto controller = NVMeController::try_initialize(device_identifier);
if (controller.is_error()) {
dmesgln("Unable to initialize NVMe controller: {}", controller.error());
} else {
m_controllers.append(controller.release_value());
}
}
});
}
}
auto subclass_code = static_cast<SubclassID>(device_identifier.subclass_code().value());
if (subclass_code == SubclassID::IDEController && kernel_command_line().is_ide_enabled()) {
m_controllers.append(IDEController::initialize(device_identifier, force_pio));
}
if (subclass_code == SubclassID::SATAController
&& device_identifier.prog_if().value() == to_underlying(PCI::MassStorage::SATAProgIF::AHCI)) {
m_controllers.append(AHCIController::initialize(device_identifier));
}
if (subclass_code == SubclassID::NVMeController) {
auto controller = NVMeController::try_initialize(device_identifier);
if (controller.is_error()) {
dmesgln("Unable to initialize NVMe controller: {}", controller.error());
} else {
m_controllers.append(controller.release_value());
}
}
});
}
m_controllers.append(RamdiskController::initialize());
}
UNMAP_AFTER_INIT void StorageManagement::enumerate_storage_devices()
{
VERIFY(!m_controllers.is_empty());
for (auto& controller : m_controllers) {
for (size_t device_index = 0; device_index < controller.devices_count(); device_index++) {
auto device = controller.device(device_index);
if (device.is_null())
continue;
m_storage_devices.append(device.release_nonnull());
}
}
}
UNMAP_AFTER_INIT void StorageManagement::dump_storage_devices_and_partitions() const
{
dbgln("StorageManagement: Detected {} storage devices", m_storage_devices.size_slow());
for (auto const& storage_device : m_storage_devices) {
auto const& partitions = storage_device.partitions();
if (partitions.is_empty()) {
dbgln(" Device: {} (no partitions)", storage_device.early_storage_name());
} else {
dbgln(" Device: {} ({} partitions)", storage_device.early_storage_name(), partitions.size());
unsigned partition_number = 1;
for (auto const& partition : partitions) {
dbgln(" Partition: {} (UUID {})", partition_number, partition.metadata().unique_guid().to_string());
partition_number++;
}
}
}
}
UNMAP_AFTER_INIT OwnPtr<PartitionTable> StorageManagement::try_to_initialize_partition_table(const StorageDevice& device) const
{
auto mbr_table_or_result = MBRPartitionTable::try_to_initialize(device);
if (!mbr_table_or_result.is_error())
return move(mbr_table_or_result.value());
if (mbr_table_or_result.error() == PartitionTable::Error::MBRProtective) {
auto gpt_table_or_result = GUIDPartitionTable::try_to_initialize(device);
if (gpt_table_or_result.is_error())
return {};
return move(gpt_table_or_result.value());
}
2022-01-06 17:07:15 +03:00
if (mbr_table_or_result.error() == PartitionTable::Error::ContainsEBR) {
auto ebr_table_or_result = EBRPartitionTable::try_to_initialize(device);
if (ebr_table_or_result.is_error())
return {};
return move(ebr_table_or_result.value());
}
return {};
}
UNMAP_AFTER_INIT void StorageManagement::enumerate_disk_partitions()
{
VERIFY(!m_storage_devices.is_empty());
size_t device_index = 0;
for (auto& device : m_storage_devices) {
auto partition_table = try_to_initialize_partition_table(device);
if (!partition_table)
continue;
for (size_t partition_index = 0; partition_index < partition_table->partitions_count(); partition_index++) {
auto partition_metadata = partition_table->partition(partition_index);
if (!partition_metadata.has_value())
continue;
// FIXME: Try to not hardcode a maximum of 16 partitions per drive!
auto disk_partition = DiskPartition::create(device, (partition_index + (16 * device_index)), partition_metadata.value());
device.add_partition(disk_partition);
}
device_index++;
}
}
UNMAP_AFTER_INIT void StorageManagement::determine_boot_device()
{
VERIFY(!m_controllers.is_empty());
if (m_boot_argument.starts_with("/dev/"sv)) {
StringView storage_name = m_boot_argument.substring_view(5);
for (auto& storage_device : m_storage_devices) {
if (storage_device.early_storage_name() == storage_name) {
m_boot_block_device = storage_device;
break;
}
// If the early storage name's last character is a digit (e.g. in the case of NVMe where the last
// number in the device name indicates the node, e.g. /dev/nvme0n1 we need to append a "p" character
// so that we can properly distinguish the partition index from the device itself
char storage_name_last_char = *(storage_device.early_storage_name().end() - 1);
OwnPtr<KString> normalized_name;
StringView early_storage_name;
if (storage_name_last_char >= '0' && storage_name_last_char <= '9') {
normalized_name = MUST(KString::formatted("{}p", storage_device.early_storage_name()));
early_storage_name = normalized_name->view();
} else {
early_storage_name = storage_device.early_storage_name();
}
auto start_storage_name = storage_name.substring_view(0, min(early_storage_name.length(), storage_name.length()));
if (early_storage_name.starts_with(start_storage_name)) {
StringView partition_sign = storage_name.substring_view(start_storage_name.length());
auto possible_partition_number = partition_sign.to_uint<size_t>();
if (!possible_partition_number.has_value())
break;
if (possible_partition_number.value() == 0)
break;
if (storage_device.partitions().size() < possible_partition_number.value())
break;
m_boot_block_device = storage_device.partitions()[possible_partition_number.value() - 1];
break;
}
}
}
if (m_boot_block_device.is_null()) {
dump_storage_devices_and_partitions();
PANIC("StorageManagement: boot device {} not found", m_boot_argument);
}
}
UNMAP_AFTER_INIT void StorageManagement::determine_boot_device_with_partition_uuid()
{
VERIFY(!m_storage_devices.is_empty());
VERIFY(m_boot_argument.starts_with(partition_uuid_prefix));
auto partition_uuid = UUID(m_boot_argument.substring_view(partition_uuid_prefix.length()), UUID::Endianness::Mixed);
if (partition_uuid.to_string().length() != 36) {
// FIXME: It would be helpful to output the specified and detected UUIDs in this case,
// but we never actually enter this path - if the length doesn't match, the UUID
// constructor above crashes with a VERIFY in convert_string_view_to_uuid().
PANIC("StorageManagement: Specified partition UUID is not valid");
}
for (auto& storage_device : m_storage_devices) {
for (auto& partition : storage_device.partitions()) {
if (partition.metadata().unique_guid().is_zero())
continue;
if (partition.metadata().unique_guid() == partition_uuid) {
m_boot_block_device = partition;
break;
}
}
}
}
RefPtr<BlockDevice> StorageManagement::boot_block_device() const
{
return m_boot_block_device.strong_ref();
}
MajorNumber StorageManagement::storage_type_major_number()
{
return 3;
}
MinorNumber StorageManagement::generate_storage_minor_number()
{
auto minor_number = s_device_minor_number.load();
s_device_minor_number++;
return minor_number;
}
NonnullRefPtr<FileSystem> StorageManagement::root_filesystem() const
{
auto boot_device_description = boot_block_device();
if (!boot_device_description) {
dump_storage_devices_and_partitions();
PANIC("StorageManagement: Couldn't find a suitable device to boot from");
}
auto description_or_error = OpenFileDescription::try_create(boot_device_description.release_nonnull());
VERIFY(!description_or_error.is_error());
auto file_system = Ext2FS::try_create(description_or_error.release_value()).release_value();
if (auto result = file_system->initialize(); result.is_error()) {
dump_storage_devices_and_partitions();
PANIC("StorageManagement: Couldn't open root filesystem: {}", result.error());
}
return file_system;
}
UNMAP_AFTER_INIT void StorageManagement::initialize(StringView root_device, bool force_pio)
{
VERIFY(s_device_minor_number == 0);
m_boot_argument = root_device;
enumerate_controllers(force_pio);
enumerate_storage_devices();
enumerate_disk_partitions();
if (!boot_argument_contains_partition_uuid()) {
determine_boot_device();
return;
}
determine_boot_device_with_partition_uuid();
}
StorageManagement& StorageManagement::the()
{
return *s_the;
}
}