ladybird/Kernel/Heap/kmalloc.cpp

235 lines
7.1 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Really really *really* Q&D malloc() and free() implementations
* just to get going. Don't ever let anyone see this shit. :^)
*/
#include <AK/Assertions.h>
#include <AK/Bitmap.h>
#include <AK/Optional.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
2020-06-06 07:01:30 +03:00
#include <Kernel/SpinLock.h>
#include <Kernel/StdLib.h>
#include <Kernel/VM/MemoryManager.h>
#define SANITIZE_KMALLOC
struct AllocationHeader {
size_t allocation_size_in_chunks;
u8 data[0];
};
#define CHUNK_SIZE 32
#define POOL_SIZE (3 * MiB)
#define ETERNAL_RANGE_SIZE (2 * MiB)
// We need to make sure to not stomp on global variables or other parts
// of the kernel image!
extern u32 end_of_kernel_bss;
#define ETERNAL_BASE_PHYSICAL ((u8*)PAGE_ROUND_UP(&end_of_kernel_bss))
#define BASE_PHYSICAL (ETERNAL_BASE_PHYSICAL + ETERNAL_RANGE_SIZE)
static u8 alloc_map[POOL_SIZE / CHUNK_SIZE / 8];
size_t g_kmalloc_bytes_allocated = 0;
size_t g_kmalloc_bytes_free = POOL_SIZE;
size_t g_kmalloc_bytes_eternal = 0;
size_t g_kmalloc_call_count;
size_t g_kfree_call_count;
bool g_dump_kmalloc_stacks;
static u8* s_next_eternal_ptr;
static u8* s_end_of_eternal_range;
static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()
2020-06-06 07:01:30 +03:00
void kmalloc_init()
{
memset(&alloc_map, 0, sizeof(alloc_map));
memset((void*)BASE_PHYSICAL, 0, POOL_SIZE);
2020-06-06 07:01:30 +03:00
s_lock.initialize();
g_kmalloc_bytes_eternal = 0;
g_kmalloc_bytes_allocated = 0;
g_kmalloc_bytes_free = POOL_SIZE;
s_next_eternal_ptr = (u8*)ETERNAL_BASE_PHYSICAL;
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
}
void* kmalloc_eternal(size_t size)
{
2020-06-06 07:01:30 +03:00
ScopedSpinLock lock(s_lock);
void* ptr = s_next_eternal_ptr;
s_next_eternal_ptr += size;
ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
g_kmalloc_bytes_eternal += size;
return ptr;
}
void* kmalloc_aligned(size_t size, size_t alignment)
{
void* ptr = kmalloc(size + alignment + sizeof(void*));
size_t max_addr = (size_t)ptr + alignment;
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
((void**)aligned_ptr)[-1] = ptr;
return aligned_ptr;
}
void kfree_aligned(void* ptr)
{
kfree(((void**)ptr)[-1]);
}
void* kmalloc_page_aligned(size_t size)
{
void* ptr = kmalloc_aligned(size, PAGE_SIZE);
size_t d = (size_t)ptr;
ASSERT((d & PAGE_MASK) == d);
return ptr;
}
inline void* kmalloc_allocate(size_t first_chunk, size_t chunks_needed)
{
auto* a = (AllocationHeader*)(BASE_PHYSICAL + (first_chunk * CHUNK_SIZE));
u8* ptr = a->data;
a->allocation_size_in_chunks = chunks_needed;
Bitmap bitmap_wrapper = Bitmap::wrap(alloc_map, POOL_SIZE / CHUNK_SIZE);
bitmap_wrapper.set_range(first_chunk, chunks_needed, true);
g_kmalloc_bytes_allocated += a->allocation_size_in_chunks * CHUNK_SIZE;
g_kmalloc_bytes_free -= a->allocation_size_in_chunks * CHUNK_SIZE;
#ifdef SANITIZE_KMALLOC
memset(ptr, KMALLOC_SCRUB_BYTE, (a->allocation_size_in_chunks * CHUNK_SIZE) - sizeof(AllocationHeader));
#endif
return ptr;
}
void* kmalloc_impl(size_t size)
{
2020-06-06 07:01:30 +03:00
ScopedSpinLock lock(s_lock);
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
dbg() << "kmalloc(" << size << ")";
Kernel::dump_backtrace();
}
// We need space for the AllocationHeader at the head of the block.
size_t real_size = size + sizeof(AllocationHeader);
if (g_kmalloc_bytes_free < real_size) {
Kernel::dump_backtrace();
klog() << "kmalloc(): PANIC! Out of memory\nsum_free=" << g_kmalloc_bytes_free << ", real_size=" << real_size;
Processor::halt();
}
size_t chunks_needed = (real_size + CHUNK_SIZE - 1) / CHUNK_SIZE;
Bitmap bitmap_wrapper = Bitmap::wrap(alloc_map, POOL_SIZE / CHUNK_SIZE);
Optional<size_t> first_chunk;
// Choose the right politic for allocation.
constexpr u32 best_fit_threshold = 128;
if (chunks_needed < best_fit_threshold) {
first_chunk = bitmap_wrapper.find_first_fit(chunks_needed);
} else {
first_chunk = bitmap_wrapper.find_best_fit(chunks_needed);
}
if (!first_chunk.has_value()) {
klog() << "kmalloc(): PANIC! Out of memory (no suitable block for size " << size << ")";
Kernel::dump_backtrace();
Processor::halt();
}
return kmalloc_allocate(first_chunk.value(), chunks_needed);
}
2020-06-06 07:01:30 +03:00
static inline void kfree_impl(void* ptr)
{
++g_kfree_call_count;
auto* a = (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
FlatPtr start = ((FlatPtr)a - (FlatPtr)BASE_PHYSICAL) / CHUNK_SIZE;
Bitmap bitmap_wrapper = Bitmap::wrap(alloc_map, POOL_SIZE / CHUNK_SIZE);
bitmap_wrapper.set_range(start, a->allocation_size_in_chunks, false);
g_kmalloc_bytes_allocated -= a->allocation_size_in_chunks * CHUNK_SIZE;
g_kmalloc_bytes_free += a->allocation_size_in_chunks * CHUNK_SIZE;
#ifdef SANITIZE_KMALLOC
memset(a, KFREE_SCRUB_BYTE, a->allocation_size_in_chunks * CHUNK_SIZE);
#endif
}
2020-06-06 07:01:30 +03:00
void kfree(void* ptr)
{
if (!ptr)
return;
ScopedSpinLock lock(s_lock);
kfree_impl(ptr);
}
void* krealloc(void* ptr, size_t new_size)
{
if (!ptr)
return kmalloc(new_size);
2020-06-06 07:01:30 +03:00
ScopedSpinLock lock(s_lock);
auto* a = (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
size_t old_size = a->allocation_size_in_chunks * CHUNK_SIZE;
if (old_size == new_size)
return ptr;
auto* new_ptr = kmalloc(new_size);
memcpy(new_ptr, ptr, min(old_size, new_size));
2020-06-06 07:01:30 +03:00
kfree_impl(ptr);
return new_ptr;
}
void* operator new(size_t size)
{
return kmalloc(size);
}
void* operator new[](size_t size)
{
return kmalloc(size);
}