ladybird/Kernel/Net/E1000NetworkAdapter.cpp

355 lines
12 KiB
C++
Raw Normal View History

#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/PCI.h>
#include <Kernel/IO.h>
#define REG_CTRL 0x0000
#define REG_STATUS 0x0008
#define REG_EEPROM 0x0014
#define REG_CTRL_EXT 0x0018
#define REG_IMASK 0x00D0
#define REG_RCTRL 0x0100
#define REG_RXDESCLO 0x2800
#define REG_RXDESCHI 0x2804
#define REG_RXDESCLEN 0x2808
#define REG_RXDESCHEAD 0x2810
#define REG_RXDESCTAIL 0x2818
#define REG_TCTRL 0x0400
#define REG_TXDESCLO 0x3800
#define REG_TXDESCHI 0x3804
#define REG_TXDESCLEN 0x3808
#define REG_TXDESCHEAD 0x3810
#define REG_TXDESCTAIL 0x3818
#define REG_RDTR 0x2820 // RX Delay Timer Register
#define REG_RXDCTL 0x3828 // RX Descriptor Control
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
#define ECTRL_SLU 0x40 //set link up
#define RCTL_EN (1 << 1) // Receiver Enable
#define RCTL_SBP (1 << 2) // Store Bad Packets
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
#define RCTL_LBM_NONE (0 << 6) // No Loopback
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
#define RCTL_DPF (1 << 22) // Discard Pause Frames
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
// Buffer Sizes
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
// Transmit Command
#define CMD_EOP (1 << 0) // End of Packet
#define CMD_IFCS (1 << 1) // Insert FCS
#define CMD_IC (1 << 2) // Insert Checksum
#define CMD_RS (1 << 3) // Report Status
#define CMD_RPS (1 << 4) // Report Packet Sent
#define CMD_VLE (1 << 6) // VLAN Packet Enable
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
// TCTL Register
#define TCTL_EN (1 << 1) // Transmit Enable
#define TCTL_PSP (1 << 3) // Pad Short Packets
#define TCTL_CT_SHIFT 4 // Collision Threshold
#define TCTL_COLD_SHIFT 12 // Collision Distance
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
#define TSTA_DD (1 << 0) // Descriptor Done
#define TSTA_EC (1 << 1) // Excess Collisions
#define TSTA_LC (1 << 2) // Late Collision
#define LSTA_TU (1 << 3) // Transmit Underrun
OwnPtr<E1000NetworkAdapter> E1000NetworkAdapter::autodetect()
{
static const PCI::ID qemu_bochs_vbox_id = { 0x8086, 0x100e };
PCI::Address found_address;
PCI::enumerate_all([&] (const PCI::Address& address, PCI::ID id) {
if (id == qemu_bochs_vbox_id) {
found_address = address;
return;
}
});
if (found_address.is_null())
return nullptr;
byte irq = PCI::get_interrupt_line(found_address);
return make<E1000NetworkAdapter>(found_address, irq);
}
static E1000NetworkAdapter* s_the;
E1000NetworkAdapter* E1000NetworkAdapter::the()
{
return s_the;
}
E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, byte irq)
: IRQHandler(irq)
, m_pci_address(pci_address)
{
s_the = this;
kprintf("E1000: Found at PCI address %b:%b:%b\n", pci_address.bus(), pci_address.slot(), pci_address.function());
enable_bus_mastering(m_pci_address);
m_mmio_base = PhysicalAddress(PCI::get_BAR0(m_pci_address));
MM.map_for_kernel(LinearAddress(m_mmio_base.get()), m_mmio_base);
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(12288).get()), m_mmio_base.offset(12288));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(16384).get()), m_mmio_base.offset(16384));
m_use_mmio = true;
m_io_base = PCI::get_BAR1(m_pci_address) & ~1;
m_interrupt_line = PCI::get_interrupt_line(m_pci_address);
kprintf("E1000: IO port base: %w\n", m_io_base);
kprintf("E1000: MMIO base: P%x\n", m_mmio_base);
kprintf("E1000: Interrupt line: %u\n", m_interrupt_line);
detect_eeprom();
kprintf("E1000: Has EEPROM? %u\n", m_has_eeprom);
read_mac_address();
2019-03-10 21:15:22 +03:00
const auto& mac = mac_address();
kprintf("E1000: MAC address: %b:%b:%b:%b:%b:%b\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
dword flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
initialize_rx_descriptors();
initialize_tx_descriptors();
out32(REG_IMASK, 0x1f6dc);
out32(REG_IMASK, 0xff & ~4);
in32(0xc0);
enable_irq();
}
E1000NetworkAdapter::~E1000NetworkAdapter()
{
}
void E1000NetworkAdapter::handle_irq()
{
out32(REG_IMASK, 0x1);
dword status = in32(0xc0);
if (status & 4) {
dword flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
}
if (status & 0x10) {
// Threshold OK?
}
if (status & 0x80) {
2019-03-11 01:40:09 +03:00
receive();
}
}
void E1000NetworkAdapter::detect_eeprom()
{
out32(REG_EEPROM, 0x1);
for (volatile int i = 0; i < 999; ++i) {
dword data = in32(REG_EEPROM);
if (data & 0x10) {
m_has_eeprom = true;
return;
}
}
m_has_eeprom = false;
}
dword E1000NetworkAdapter::read_eeprom(byte address)
{
word data = 0;
dword tmp = 0;
if (m_has_eeprom) {
out32(REG_EEPROM, ((dword)address << 8) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 4)))
;
} else {
out32(REG_EEPROM, ((dword)address << 2) | 1);
while (!((tmp = in32(REG_EEPROM)) & (1 << 1)))
;
}
data = (tmp >> 16) & 0xffff;
return data;
}
void E1000NetworkAdapter::read_mac_address()
{
if (m_has_eeprom) {
byte mac[6];
dword tmp = read_eeprom(0);
mac[0] = tmp & 0xff;
mac[1] = tmp >> 8;
tmp = read_eeprom(1);
mac[2] = tmp & 0xff;
mac[3] = tmp >> 8;
tmp = read_eeprom(2);
mac[4] = tmp & 0xff;
mac[5] = tmp >> 8;
set_mac_address(mac);
} else {
ASSERT_NOT_REACHED();
}
}
void E1000NetworkAdapter::initialize_rx_descriptors()
{
auto ptr = (dword)kmalloc_eternal(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16);
// Make sure it's 16-byte aligned.
if (ptr % 16)
ptr = (ptr + 16) - (ptr % 16);
m_rx_descriptors = (e1000_rx_desc*)ptr;
for (int i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = m_rx_descriptors[i];
descriptor.addr = (qword)kmalloc_eternal(8192 + 16);
descriptor.status = 0;
}
out32(REG_RXDESCLO, ptr);
out32(REG_RXDESCHI, 0);
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
out32(REG_RXDESCHEAD, 0);
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
out32(REG_RCTRL, RCTL_EN| RCTL_SBP| RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
}
void E1000NetworkAdapter::initialize_tx_descriptors()
{
auto ptr = (dword)kmalloc_eternal(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16);
// Make sure it's 16-byte aligned.
if (ptr % 16)
ptr = (ptr + 16) - (ptr % 16);
m_tx_descriptors = (e1000_tx_desc*)ptr;
for (int i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = m_tx_descriptors[i];
descriptor.addr = (qword)kmalloc_eternal(8192 + 16);
descriptor.cmd = 0;
}
out32(REG_TXDESCLO, ptr);
out32(REG_TXDESCHI, 0);
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
out32(REG_TXDESCHEAD, 0);
out32(REG_TXDESCTAIL, 0);
out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP);
out32(REG_TIPG, 0x0060200A);
}
void E1000NetworkAdapter::out8(word address, byte data)
{
if (m_use_mmio) {
auto* ptr = (volatile byte*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
IO::out8(m_io_base + address, data);
}
void E1000NetworkAdapter::out16(word address, word data)
{
if (m_use_mmio) {
auto* ptr = (volatile word*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
IO::out16(m_io_base + address, data);
}
void E1000NetworkAdapter::out32(word address, dword data)
{
if (m_use_mmio) {
auto* ptr = (volatile dword*)(m_mmio_base.get() + address);
*ptr = data;
return;
}
IO::out32(m_io_base + address, data);
}
byte E1000NetworkAdapter::in8(word address)
{
if (m_use_mmio)
return *(volatile byte*)(m_mmio_base.get() + address);
return IO::in8(m_io_base + address);
}
word E1000NetworkAdapter::in16(word address)
{
if (m_use_mmio)
return *(volatile word*)(m_mmio_base.get() + address);
return IO::in16(m_io_base + address);
}
dword E1000NetworkAdapter::in32(word address)
{
if (m_use_mmio)
return *(volatile dword*)(m_mmio_base.get() + address);
return IO::in32(m_io_base + address);
}
2019-03-11 01:40:09 +03:00
void E1000NetworkAdapter::send_raw(const byte* data, int length)
{
dword tx_current = in32(REG_TXDESCTAIL);
#ifdef E1000_DEBUG
kprintf("E1000: Sending packet (%d bytes)\n", length);
#endif
auto& descriptor = m_tx_descriptors[tx_current];
ASSERT(length <= 8192);
memcpy((void*)descriptor.addr, data, length);
descriptor.length = length;
descriptor.status = 0;
descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS;
#ifdef E1000_DEBUG
kprintf("E1000: Using tx descriptor %d (head is at %d)\n", tx_current, in32(REG_TXDESCHEAD));
#endif
tx_current = (tx_current + 1) % number_of_tx_descriptors;
out32(REG_TXDESCTAIL, tx_current);
while (!descriptor.status)
;
#ifdef E1000_DEBUG
kprintf("E1000: Sent packet, status is now %b!\n", descriptor.status);
#endif
}
2019-03-11 01:40:09 +03:00
void E1000NetworkAdapter::receive()
{
dword rx_current;
for (;;) {
rx_current = in32(REG_RXDESCTAIL);
if (rx_current == in32(REG_RXDESCHEAD))
return;
rx_current = (rx_current + 1) % number_of_rx_descriptors;
if (!(m_rx_descriptors[rx_current].status & 1))
break;
auto* buffer = (byte*)m_rx_descriptors[rx_current].addr;
word length = m_rx_descriptors[rx_current].length;
#ifdef E1000_DEBUG
2019-03-11 01:40:09 +03:00
kprintf("E1000: Received 1 packet @ %p (%u) bytes!\n", buffer, length);
#endif
did_receive(buffer, length);
m_rx_descriptors[rx_current].status = 0;
out32(REG_RXDESCTAIL, rx_current);
2019-03-11 01:40:09 +03:00
}
}