2020-09-01 12:43:32 +03:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
|
* list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <AK/ByteBuffer.h>
|
|
|
|
#include <AK/MemMem.h>
|
|
|
|
#include <AK/Stream.h>
|
|
|
|
#include <AK/Vector.h>
|
|
|
|
|
|
|
|
namespace AK {
|
|
|
|
|
|
|
|
class InputMemoryStream final : public InputStream {
|
|
|
|
public:
|
|
|
|
InputMemoryStream(ReadonlyBytes bytes)
|
|
|
|
: m_bytes(bytes)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2020-09-13 13:24:17 +03:00
|
|
|
bool unreliable_eof() const override { return eof(); }
|
|
|
|
bool eof() const { return m_offset >= m_bytes.size(); }
|
2020-09-01 12:43:32 +03:00
|
|
|
|
|
|
|
size_t read(Bytes bytes) override
|
|
|
|
{
|
2020-09-05 17:39:56 +03:00
|
|
|
if (has_any_error())
|
|
|
|
return 0;
|
|
|
|
|
2020-09-01 12:43:32 +03:00
|
|
|
const auto count = min(bytes.size(), remaining());
|
|
|
|
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
|
|
|
|
m_offset += count;
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool read_or_error(Bytes bytes) override
|
|
|
|
{
|
|
|
|
if (remaining() < bytes.size()) {
|
|
|
|
set_recoverable_error();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
|
|
|
|
m_offset += bytes.size();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool discard_or_error(size_t count) override
|
|
|
|
{
|
|
|
|
if (remaining() < count) {
|
|
|
|
set_recoverable_error();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
m_offset += count;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void seek(size_t offset)
|
|
|
|
{
|
|
|
|
ASSERT(offset < m_bytes.size());
|
|
|
|
m_offset = offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
u8 peek_or_error() const
|
|
|
|
{
|
|
|
|
if (remaining() == 0) {
|
|
|
|
set_recoverable_error();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return m_bytes[m_offset];
|
|
|
|
}
|
|
|
|
|
|
|
|
// LEB128 is a variable-length encoding for integers
|
|
|
|
bool read_LEB128_unsigned(size_t& result)
|
|
|
|
{
|
|
|
|
const auto backup = m_offset;
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
size_t num_bytes = 0;
|
|
|
|
while (true) {
|
|
|
|
// Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
|
|
|
|
// past the end, this is fixed here.
|
|
|
|
if (eof()) {
|
|
|
|
m_offset = backup;
|
|
|
|
set_recoverable_error();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
const u8 byte = m_bytes[m_offset];
|
|
|
|
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
|
|
|
|
++m_offset;
|
|
|
|
if (!(byte & (1 << 7)))
|
|
|
|
break;
|
|
|
|
++num_bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// LEB128 is a variable-length encoding for integers
|
|
|
|
bool read_LEB128_signed(ssize_t& result)
|
|
|
|
{
|
|
|
|
const auto backup = m_offset;
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
size_t num_bytes = 0;
|
|
|
|
u8 byte = 0;
|
|
|
|
|
|
|
|
do {
|
|
|
|
// Note. The implementation in AK::BufferStream::read_LEB128_unsigned read one
|
|
|
|
// past the end, this is fixed here.
|
|
|
|
if (eof()) {
|
|
|
|
m_offset = backup;
|
|
|
|
set_recoverable_error();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
byte = m_bytes[m_offset];
|
|
|
|
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
|
|
|
|
++m_offset;
|
|
|
|
++num_bytes;
|
|
|
|
} while (byte & (1 << 7));
|
|
|
|
|
|
|
|
if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) {
|
|
|
|
// sign extend
|
|
|
|
result |= ((size_t)(-1) << (num_bytes * 7));
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
ReadonlyBytes bytes() const { return m_bytes; }
|
|
|
|
size_t offset() const { return m_offset; }
|
|
|
|
size_t remaining() const { return m_bytes.size() - m_offset; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
ReadonlyBytes m_bytes;
|
|
|
|
size_t m_offset { 0 };
|
|
|
|
};
|
|
|
|
|
|
|
|
// All data written to this stream can be read from it. Reading and writing is done
|
|
|
|
// using different offsets, meaning that it is not necessary to seek to the start
|
|
|
|
// before reading; this behaviour differs from BufferStream.
|
|
|
|
class DuplexMemoryStream final : public DuplexStream {
|
|
|
|
public:
|
|
|
|
static constexpr size_t chunk_size = 4 * 1024;
|
|
|
|
|
2020-09-13 13:24:17 +03:00
|
|
|
bool unreliable_eof() const override { return eof(); }
|
|
|
|
bool eof() const { return m_write_offset == m_read_offset; }
|
2020-09-01 12:43:32 +03:00
|
|
|
|
|
|
|
bool discard_or_error(size_t count) override
|
|
|
|
{
|
|
|
|
if (m_write_offset - m_read_offset < count) {
|
|
|
|
set_recoverable_error();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
m_read_offset += count;
|
|
|
|
try_discard_chunks();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Optional<size_t> offset_of(ReadonlyBytes value) const
|
|
|
|
{
|
|
|
|
if (value.size() > remaining())
|
|
|
|
return {};
|
|
|
|
|
|
|
|
// First, find which chunk we're in.
|
|
|
|
auto chunk_index = (m_read_offset - m_base_offset) / chunk_size;
|
|
|
|
auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size;
|
|
|
|
auto first_chunk_index = chunk_index;
|
|
|
|
auto last_written_chunk_offset = m_write_offset % chunk_size;
|
|
|
|
auto first_chunk_offset = m_read_offset % chunk_size;
|
|
|
|
size_t last_chunk_offset = 0;
|
|
|
|
auto found_value = false;
|
|
|
|
|
|
|
|
for (; chunk_index <= last_written_chunk_index; ++chunk_index) {
|
|
|
|
auto chunk_bytes = m_chunks[chunk_index].bytes();
|
|
|
|
size_t chunk_offset = 0;
|
|
|
|
if (chunk_index == last_written_chunk_index) {
|
|
|
|
chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset);
|
|
|
|
}
|
|
|
|
if (chunk_index == first_chunk_index) {
|
|
|
|
chunk_bytes = chunk_bytes.slice(first_chunk_offset);
|
|
|
|
chunk_offset = first_chunk_offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
// See if 'value' is in this chunk,
|
|
|
|
auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size());
|
|
|
|
if (!position)
|
|
|
|
continue; // Not in this chunk either :(
|
|
|
|
|
|
|
|
// We found it!
|
|
|
|
found_value = true;
|
|
|
|
last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (found_value) {
|
|
|
|
if (first_chunk_index == chunk_index)
|
|
|
|
return last_chunk_offset - first_chunk_offset;
|
|
|
|
|
|
|
|
return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
// No dice.
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
2020-09-01 12:55:04 +03:00
|
|
|
size_t read_without_consuming(Bytes bytes) const
|
2020-09-01 12:43:32 +03:00
|
|
|
{
|
|
|
|
size_t nread = 0;
|
|
|
|
while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
|
2020-09-11 15:36:12 +03:00
|
|
|
const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size;
|
2020-09-01 12:43:32 +03:00
|
|
|
const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread);
|
|
|
|
nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
|
|
|
|
}
|
|
|
|
|
2020-09-01 12:55:04 +03:00
|
|
|
return nread;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t read(Bytes bytes) override
|
|
|
|
{
|
2020-09-05 17:39:56 +03:00
|
|
|
if (has_any_error())
|
|
|
|
return 0;
|
|
|
|
|
2020-09-01 12:55:04 +03:00
|
|
|
const auto nread = read_without_consuming(bytes);
|
2020-09-01 12:43:32 +03:00
|
|
|
|
2020-09-01 12:55:04 +03:00
|
|
|
m_read_offset += nread;
|
2020-09-01 12:43:32 +03:00
|
|
|
try_discard_chunks();
|
|
|
|
|
|
|
|
return nread;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool read_or_error(Bytes bytes) override
|
|
|
|
{
|
|
|
|
if (m_write_offset - m_read_offset < bytes.size()) {
|
|
|
|
set_recoverable_error();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
read(bytes);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t write(ReadonlyBytes bytes) override
|
|
|
|
{
|
|
|
|
size_t nwritten = 0;
|
|
|
|
while (bytes.size() - nwritten > 0) {
|
|
|
|
if ((m_write_offset + nwritten) % chunk_size == 0)
|
|
|
|
m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));
|
|
|
|
|
|
|
|
nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size));
|
|
|
|
}
|
|
|
|
|
|
|
|
m_write_offset += nwritten;
|
|
|
|
return nwritten;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool write_or_error(ReadonlyBytes bytes) override
|
|
|
|
{
|
|
|
|
write(bytes);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2020-09-01 12:55:04 +03:00
|
|
|
ByteBuffer copy_into_contiguous_buffer() const
|
|
|
|
{
|
|
|
|
auto buffer = ByteBuffer::create_uninitialized(remaining());
|
|
|
|
|
|
|
|
const auto nread = read_without_consuming(buffer);
|
|
|
|
ASSERT(nread == buffer.size());
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
2020-09-01 12:43:32 +03:00
|
|
|
size_t roffset() const { return m_read_offset; }
|
|
|
|
size_t woffset() const { return m_write_offset; }
|
|
|
|
|
|
|
|
size_t remaining() const { return m_write_offset - m_read_offset; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
void try_discard_chunks()
|
|
|
|
{
|
|
|
|
while (m_read_offset - m_base_offset >= chunk_size) {
|
|
|
|
m_chunks.take_first();
|
|
|
|
m_base_offset += chunk_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector<ByteBuffer> m_chunks;
|
|
|
|
size_t m_write_offset { 0 };
|
|
|
|
size_t m_read_offset { 0 };
|
|
|
|
size_t m_base_offset { 0 };
|
|
|
|
};
|
|
|
|
|
2020-09-01 17:16:32 +03:00
|
|
|
class OutputMemoryStream final : public OutputStream {
|
|
|
|
public:
|
|
|
|
size_t write(ReadonlyBytes bytes) override { return m_stream.write(bytes); }
|
|
|
|
bool write_or_error(ReadonlyBytes bytes) override { return m_stream.write_or_error(bytes); }
|
|
|
|
|
|
|
|
ByteBuffer copy_into_contiguous_buffer() const { return m_stream.copy_into_contiguous_buffer(); }
|
|
|
|
|
|
|
|
Optional<size_t> offset_of(ReadonlyBytes value) const { return m_stream.offset_of(value); }
|
|
|
|
|
|
|
|
size_t size() const { return m_stream.woffset(); }
|
|
|
|
|
|
|
|
private:
|
|
|
|
DuplexMemoryStream m_stream;
|
|
|
|
};
|
|
|
|
|
2020-09-01 12:43:32 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
using AK::DuplexMemoryStream;
|
|
|
|
using AK::InputMemoryStream;
|
|
|
|
using AK::InputStream;
|
2020-09-01 17:16:32 +03:00
|
|
|
using AK::OutputMemoryStream;
|