AK: Cover TestComplex with more tests

Related:
- video detailing the process of writing these tests: https://www.youtube.com/watch?v=enxglLlALvI
- PR fixing bugs the above effort found: https://github.com/SerenityOS/serenity/pull/22025
This commit is contained in:
Martin Janiczek 2023-12-30 16:27:41 +01:00 committed by Andrew Kaster
parent d52ffcd830
commit 5a8781393a
Notes: sideshowbarker 2024-07-17 02:28:18 +09:00
2 changed files with 199 additions and 0 deletions

View File

@ -277,6 +277,14 @@ static constexpr Complex<T> cexp(Complex<T> const& a)
}
}
template<AK::Concepts::Arithmetic T>
struct AK::Formatter<AK::Complex<T>> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, AK::Complex<T> c)
{
return Formatter<StringView>::format(builder, TRY(String::formatted("{}{:+}i", c.real(), c.imag())));
}
};
#if USING_AK_GLOBALLY
using AK::approx_eq;
using AK::cexp;

View File

@ -8,6 +8,33 @@
#include <AK/Complex.h>
using namespace Test::Randomized;
namespace {
Complex<f64> gen_complex()
{
auto r = Gen::number_f64();
auto i = Gen::number_f64();
return Complex<f64>(r, i);
}
Complex<f64> gen_complex(f64 min, f64 max)
{
auto r = Gen::number_f64(min, max);
auto i = Gen::number_f64(min, max);
return Complex<f64>(r, i);
}
}
template<typename T>
void expect_approximate_complex(Complex<T> a, Complex<T> b)
{
EXPECT_APPROXIMATE(a.real(), b.real());
EXPECT_APPROXIMATE(a.imag(), b.imag());
}
TEST_CASE(Complex)
{
auto a = Complex<float> { 1.f, 1.f };
@ -68,3 +95,167 @@ TEST_CASE(real_operators_regression)
EXPECT_EQ(c2.imag(), -0.5);
}
}
TEST_CASE(constructor_0_is_origin)
{
auto c = Complex<f64>();
EXPECT_EQ(c.real(), 0L);
EXPECT_EQ(c.imag(), 0L);
}
RANDOMIZED_TEST_CASE(constructor_1)
{
GEN(r, Gen::number_f64());
auto c = Complex<f64>(r);
EXPECT_EQ(c.real(), r);
EXPECT_EQ(c.imag(), 0L);
}
RANDOMIZED_TEST_CASE(constructor_2)
{
GEN(r, Gen::number_f64());
GEN(i, Gen::number_f64());
auto c = Complex<f64>(r, i);
EXPECT_EQ(c.real(), r);
EXPECT_EQ(c.imag(), i);
}
RANDOMIZED_TEST_CASE(magnitude_squared)
{
GEN(c, gen_complex());
auto magnitude_squared = c.magnitude_squared();
auto magnitude = c.magnitude();
EXPECT_APPROXIMATE(magnitude_squared, magnitude * magnitude);
}
RANDOMIZED_TEST_CASE(from_polar_magnitude)
{
// Magnitude only makes sense non-negative, but the library allows it to be negative.
GEN(m, Gen::number_f64(-1000, 1000));
GEN(p, Gen::number_f64(-1000, 1000));
auto c = Complex<f64>::from_polar(m, p);
EXPECT_APPROXIMATE(c.magnitude(), abs(m));
}
RANDOMIZED_TEST_CASE(from_polar_phase)
{
// To have a meaningful phase, magnitude needs to be >0.
GEN(m, Gen::number_f64(1, 1000));
GEN(p, Gen::number_f64(-1000, 1000));
auto c = Complex<f64>::from_polar(m, p);
// Returned phase is in the (-pi,pi] interval.
// We need to mod from our randomly generated [-1000,1000] interval]
// down to [0,2pi) or (-2pi,0] depending on our sign.
// Then we can adjust and get into the -pi..pi range by adding/subtracting
// one last 2pi.
auto wanted_p = fmod(p, 2 * M_PI);
if (wanted_p > M_PI)
wanted_p -= 2 * M_PI;
else if (wanted_p < -M_PI)
wanted_p += 2 * M_PI;
EXPECT_APPROXIMATE(c.phase(), wanted_p);
}
RANDOMIZED_TEST_CASE(imag_untouched_c_plus_r)
{
GEN(c1, gen_complex());
GEN(r2, Gen::number_f64());
auto c2 = c1 + r2;
EXPECT_EQ(c2.imag(), c1.imag());
}
RANDOMIZED_TEST_CASE(imag_untouched_c_minus_r)
{
GEN(c1, gen_complex());
GEN(r2, Gen::number_f64());
auto c2 = c1 - r2;
EXPECT_EQ(c2.imag(), c1.imag());
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_plus)
{
GEN(c1, gen_complex());
GEN(c2, gen_complex());
auto out1 = c1 + c2;
auto out2 = c1;
out2 += c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_minus)
{
GEN(c1, gen_complex());
GEN(c2, gen_complex());
auto out1 = c1 - c2;
auto out2 = c1;
out2 -= c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_mult)
{
GEN(c1, gen_complex(-1000, 1000));
GEN(c2, gen_complex(-1000, 1000));
auto out1 = c1 * c2;
auto out2 = c1;
out2 *= c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(assignment_same_as_binop_div)
{
GEN(c1, gen_complex(-1000, 1000));
GEN(c2, gen_complex(-1000, 1000));
auto out1 = c1 / c2;
auto out2 = c1;
out2 /= c2;
EXPECT_EQ(out2, out1);
}
RANDOMIZED_TEST_CASE(commutativity_c_c)
{
GEN(c1, gen_complex());
GEN(c2, gen_complex());
expect_approximate_complex(c1 + c2, c2 + c1);
expect_approximate_complex(c1 * c2, c2 * c1);
}
RANDOMIZED_TEST_CASE(commutativity_c_r)
{
GEN(c, gen_complex());
GEN(r, Gen::number_f64());
expect_approximate_complex(r + c, c + r);
expect_approximate_complex(r * c, c * r);
}
RANDOMIZED_TEST_CASE(unary_plus_noop)
{
GEN(c, gen_complex());
EXPECT_EQ(+c, c);
}
RANDOMIZED_TEST_CASE(unary_minus_inverse)
{
GEN(c, gen_complex());
expect_approximate_complex(-(-c), c);
}
RANDOMIZED_TEST_CASE(wrapping_real)
{
GEN(c, gen_complex(-1000, 1000));
GEN(r, Gen::number_f64(-1000, 1000));
auto cr = Complex<f64>(r);
expect_approximate_complex(r + c, cr + c);
expect_approximate_complex(r - c, cr - c);
expect_approximate_complex(r * c, cr * c);
expect_approximate_complex(r / c, cr / c);
expect_approximate_complex(c + r, c + cr);
expect_approximate_complex(c - r, c - cr);
expect_approximate_complex(c * r, c * cr);
expect_approximate_complex(c / r, c / cr);
}