Kernel: Implement a simple virtual address range allocator.

This replaces the previous virtual address allocator which was basically
just "m_next_address += size;"

With this in place, virtual addresses can get reused, which cuts down on
the number of page tables created. When we implement ASLR some day, we'll
probably have to do page table deallocation, but for now page tables are
only deallocated once the process dies.
This commit is contained in:
Andreas Kling 2019-05-17 03:40:15 +02:00
parent c56e3ebee1
commit c414e65498
Notes: sideshowbarker 2024-07-19 14:05:28 +09:00
5 changed files with 231 additions and 22 deletions

View File

@ -18,6 +18,7 @@ KERNEL_OBJS = \
VM/VMObject.o \
VM/PageDirectory.o \
VM/PhysicalPage.o \
VM/RangeAllocator.o \
Console.o \
IRQHandler.o \
kprintf.o \

View File

@ -70,14 +70,16 @@ bool Process::in_group(gid_t gid) const
Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit)
{
laddr.mask(PAGE_MASK);
size = PAGE_ROUND_UP(size);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_next_region;
m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable)));
Range range;
if (laddr.is_null())
range = m_range_allocator.allocate_anywhere(size);
else
range = m_range_allocator.allocate_specific(laddr, size);
m_regions.append(adopt(*new Region(range.base(), range.size(), move(name), is_readable, is_writable)));
MM.map_region(*this, *m_regions.last());
if (commit)
m_regions.last()->commit();
@ -86,30 +88,34 @@ Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name
Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr<Inode>&& inode, String&& name, bool is_readable, bool is_writable)
{
laddr.mask(PAGE_MASK);
size = PAGE_ROUND_UP(size);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_next_region;
m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
m_regions.append(adopt(*new Region(laddr, size, move(inode), move(name), is_readable, is_writable)));
Range range;
if (laddr.is_null())
range = m_range_allocator.allocate_anywhere(size);
else
range = m_range_allocator.allocate_specific(laddr, size);
m_regions.append(adopt(*new Region(range.base(), range.size(), move(inode), move(name), is_readable, is_writable)));
MM.map_region(*this, *m_regions.last());
return m_regions.last().ptr();
}
Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, Retained<VMObject>&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable)
{
laddr.mask(PAGE_MASK);
size = PAGE_ROUND_UP(size);
// FIXME: This needs sanity checks. What if this overlaps existing regions?
if (laddr.is_null()) {
laddr = m_next_region;
m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
}
laddr.mask(0xfffff000);
Range range;
if (laddr.is_null())
range = m_range_allocator.allocate_anywhere(size);
else
range = m_range_allocator.allocate_specific(laddr, size);
offset_in_vmo &= PAGE_MASK;
size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable)));
m_regions.append(adopt(*new Region(range.base(), range.size(), move(vmo), offset_in_vmo, move(name), is_readable, is_writable)));
MM.map_region(*this, *m_regions.last());
return m_regions.last().ptr();
}
@ -119,6 +125,7 @@ bool Process::deallocate_region(Region& region)
InterruptDisabler disabler;
for (int i = 0; i < m_regions.size(); ++i) {
if (m_regions[i] == &region) {
m_range_allocator.deallocate({ region.laddr(), region.size() });
MM.unmap_region(region);
m_regions.remove(i);
return true;
@ -539,6 +546,9 @@ Process* Process::create_kernel_process(String&& name, void (*e)())
return process;
}
static const dword userspace_range_base = 0x01000000;
static const dword kernelspace_range_base = 0xc0000000;
Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<Inode>&& cwd, RetainPtr<Inode>&& executable, TTY* tty, Process* fork_parent)
: m_name(move(name))
, m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
@ -551,6 +561,7 @@ Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring
, m_executable(move(executable))
, m_tty(tty)
, m_ppid(ppid)
, m_range_allocator(LinearAddress(userspace_range_base), kernelspace_range_base - userspace_range_base)
{
dbgprintf("Process: New process PID=%u with name=%s\n", m_pid, m_name.characters());

View File

@ -7,10 +7,10 @@
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/VM/RangeAllocator.h>
#include <Kernel/TTY/TTY.h>
#include <Kernel/Syscall.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/Thread.h>
#include <Kernel/Lock.h>
@ -331,6 +331,7 @@ private:
RetainPtr<ProcessTracer> m_tracer;
OwnPtr<ELFLoader> m_elf_loader;
RangeAllocator m_range_allocator;
Lock m_big_lock { "Process" };
};

View File

@ -0,0 +1,137 @@
#include <Kernel/VM/RangeAllocator.h>
#include <Kernel/kstdio.h>
#include <AK/QuickSort.h>
RangeAllocator::RangeAllocator(LinearAddress base, size_t size)
{
m_available_ranges.append({ base, size });
}
RangeAllocator::~RangeAllocator()
{
}
void RangeAllocator::dump() const
{
dbgprintf("RangeAllocator{%p}\n", this);
for (auto& range : m_available_ranges) {
dbgprintf(" %x -> %x\n", range.base().get(), range.end().get() - 1);
}
}
Vector<Range, 2> Range::carve(const Range& taken)
{
Vector<Range, 2> parts;
if (taken == *this)
return { };
if (taken.base() > base())
parts.append({ base(), taken.base().get() - base().get() });
if (taken.end() < end())
parts.append({ taken.end(), end().get() - taken.end().get() });
#ifdef VRA_DEBUG
dbgprintf("VRA: carve: remaining parts:\n");
for (int i = 0; i < parts.size(); ++i)
dbgprintf(" %x-%x\n", parts[i].base().get(), parts[i].end().get() - 1);
#endif
return parts;
}
void RangeAllocator::carve_at_index(int index, const Range& range)
{
auto remaining_parts = m_available_ranges[index].carve(range);
ASSERT(remaining_parts.size() >= 1);
m_available_ranges[index] = remaining_parts[0];
if (remaining_parts.size() == 2)
m_available_ranges.insert(index + 1, move(remaining_parts[1]));
}
Range RangeAllocator::allocate_anywhere(size_t size)
{
for (int i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i];
if (available_range.size() < size)
continue;
Range allocated_range(available_range.base(), size);
if (available_range.size() == size) {
#ifdef VRA_DEBUG
dbgprintf("VRA: Allocated perfect-fit anywhere(%u): %x\n", size, allocated_range.base().get());
#endif
m_available_ranges.remove(i);
return allocated_range;
}
carve_at_index(i, allocated_range);
#ifdef VRA_DEBUG
dbgprintf("VRA: Allocated anywhere(%u): %x\n", size, allocated_range.base().get());
dump();
#endif
return allocated_range;
}
kprintf("VRA: Failed to allocate anywhere: %u\n", size);
return { };
}
Range RangeAllocator::allocate_specific(LinearAddress base, size_t size)
{
Range allocated_range(base, size);
for (int i = 0; i < m_available_ranges.size(); ++i) {
auto& available_range = m_available_ranges[i];
if (!available_range.contains(base, size))
continue;
if (available_range == allocated_range) {
m_available_ranges.remove(i);
return allocated_range;
}
carve_at_index(i, allocated_range);
#ifdef VRA_DEBUG
dbgprintf("VRA: Allocated specific(%u): %x\n", size, available_range.base().get());
dump();
#endif
return allocated_range;
}
kprintf("VRA: Failed to allocate specific range: %x(%u)\n", base.get(), size);
return { };
}
void RangeAllocator::deallocate(Range range)
{
#ifdef VRA_DEBUG
dbgprintf("VRA: Deallocate: %x(%u)\n", range.base().get(), range.size());
dump();
#endif
for (auto& available_range : m_available_ranges) {
if (available_range.end() == range.base()) {
available_range.m_size += range.size();
goto sort_and_merge;
}
}
m_available_ranges.append(range);
sort_and_merge:
// FIXME: We don't have to sort if we insert at the right position immediately.
quick_sort(m_available_ranges.begin(), m_available_ranges.end(), [] (auto& a, auto& b) {
return a.base() < b.base();
});
Vector<Range> merged_ranges;
merged_ranges.ensure_capacity(m_available_ranges.size());
for (auto& range : m_available_ranges) {
if (merged_ranges.is_empty()) {
merged_ranges.append(range);
continue;
}
if (range.base() == merged_ranges.last().end()) {
merged_ranges.last().m_size += range.size();
continue;
}
merged_ranges.append(range);
}
m_available_ranges = move(merged_ranges);
#ifdef VRA_DEBUG
dbgprintf("VRA: After deallocate\n");
dump();
#endif
}

View File

@ -0,0 +1,59 @@
#pragma once
#include <Kernel/LinearAddress.h>
#include <AK/Vector.h>
class Range {
friend class RangeAllocator;
public:
Range() { }
Range(LinearAddress base, size_t size)
: m_base(base)
, m_size(size)
{
}
LinearAddress base() const { return m_base; }
size_t size() const { return m_size; }
bool is_valid() const { return m_base.is_null(); }
LinearAddress end() const { return m_base.offset(m_size); }
bool operator==(const Range& other) const
{
return m_base == other.m_base && m_size == other.m_size;
}
bool contains(LinearAddress base, size_t size) const
{
return base >= m_base && base.offset(size) <= end();
}
bool contains(const Range& other) const
{
return contains(other.base(), other.size());
}
Vector<Range, 2> carve(const Range&);
private:
LinearAddress m_base;
size_t m_size { 0 };
};
class RangeAllocator {
public:
RangeAllocator(LinearAddress, size_t);
~RangeAllocator();
Range allocate_anywhere(size_t);
Range allocate_specific(LinearAddress, size_t);
void deallocate(Range);
void dump() const;
private:
void carve_at_index(int, const Range&);
Vector<Range> m_available_ranges;
};