LibCrypto: Add a simple SignedBigInteger

This patchset adds a simple SignedBigInteger that is entirely defined in
terms of UnsignedBigInteger.

It also adds a NumberTheory::Power function, which is terribly
inefficient, but since the use of exponentiation is very much
discouraged for large inputs, no particular attempts were made
to make it more performant.
This commit is contained in:
AnotherTest 2020-06-04 22:46:18 +04:30 committed by Andreas Kling
parent b4591f0037
commit d8208fd37c
Notes: sideshowbarker 2024-07-19 05:49:20 +09:00
5 changed files with 661 additions and 0 deletions

View File

@ -0,0 +1,217 @@
/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "SignedBigInteger.h"
#include <AK/StringBuilder.h>
namespace Crypto {
SignedBigInteger SignedBigInteger::import_data(const u8* ptr, size_t length)
{
bool sign = *ptr;
auto unsigned_data = UnsignedBigInteger::import_data(ptr + 1, length - 1);
return { move(unsigned_data), sign };
}
size_t SignedBigInteger::export_data(AK::ByteBuffer& data) const
{
data[0] = m_sign;
auto bytes_view = data.slice_view(1, data.size() - 1);
return m_unsigned_data.export_data(bytes_view) + 1;
}
SignedBigInteger SignedBigInteger::from_base10(StringView str)
{
bool sign = false;
if (str.length() > 1) {
auto maybe_sign = str[0];
if (maybe_sign == '-') {
str = str.substring_view(1, str.length() - 1);
sign = true;
}
if (maybe_sign == '+')
str = str.substring_view(1, str.length() - 1);
}
auto unsigned_data = UnsignedBigInteger::from_base10(str);
return { move(unsigned_data), sign };
}
String SignedBigInteger::to_base10() const
{
StringBuilder builder;
if (m_sign)
builder.append('-');
builder.append(m_unsigned_data.to_base10());
return builder.to_string();
}
FLATTEN SignedBigInteger SignedBigInteger::plus(const SignedBigInteger& other) const
{
// If both are of the same sign, just add the unsigned data and return.
if (m_sign == other.m_sign)
return { other.m_unsigned_data.plus(m_unsigned_data), m_sign };
// One value is signed while the other is not.
return m_sign ? other.minus(this->m_unsigned_data) : minus(other.m_unsigned_data);
}
FLATTEN SignedBigInteger SignedBigInteger::minus(const SignedBigInteger& other) const
{
// If the signs are different, convert the op to an addition.
if (m_sign != other.m_sign) {
// -x - y = - (x + y)
// x - -y = (x + y)
SignedBigInteger result { other.m_unsigned_data.plus(this->m_unsigned_data) };
if (m_sign)
result.negate();
return result;
}
if (!m_sign) {
// Both operands are positive.
// x - y = - (y - x)
if (m_unsigned_data < other.m_unsigned_data) {
// The result will be negative.
return { other.m_unsigned_data.minus(m_unsigned_data), true };
}
// The result will be either zero, or positive.
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
}
// Both operands are negative.
// -x - -y = y - x
if (m_unsigned_data < other.m_unsigned_data) {
// The result will be positive.
return SignedBigInteger { m_unsigned_data.minus(other.m_unsigned_data) };
}
// The result will be either zero, or negative.
// y - x = - (x - y)
return { other.m_unsigned_data.minus(m_unsigned_data), true };
}
FLATTEN SignedBigInteger SignedBigInteger::plus(const UnsignedBigInteger& other) const
{
if (m_sign) {
if (other < m_unsigned_data)
return { m_unsigned_data.minus(other), true };
return { other.minus(m_unsigned_data), false };
}
return { m_unsigned_data.plus(other), false };
}
FLATTEN SignedBigInteger SignedBigInteger::minus(const UnsignedBigInteger& other) const
{
if (m_sign)
return { m_unsigned_data.plus(m_unsigned_data), true };
if (other < m_unsigned_data)
return { m_unsigned_data.minus(other), false };
return { other.minus(m_unsigned_data), true };
}
bool SignedBigInteger::operator==(const UnsignedBigInteger& other) const
{
if (m_sign)
return false;
return m_unsigned_data == other;
}
bool SignedBigInteger::operator!=(const UnsignedBigInteger& other) const
{
if (m_sign)
return true;
return m_unsigned_data != other;
}
bool SignedBigInteger::operator<(const UnsignedBigInteger& other) const
{
if (m_sign)
return true;
return m_unsigned_data < other;
}
FLATTEN SignedBigInteger SignedBigInteger::shift_left(size_t num_bits) const
{
return SignedBigInteger { m_unsigned_data.shift_left(num_bits), m_sign };
}
FLATTEN SignedBigInteger SignedBigInteger::multiplied_by(const SignedBigInteger& other) const
{
bool result_sign = m_sign ^ other.m_sign;
return { m_unsigned_data.multiplied_by(other.m_unsigned_data), result_sign };
}
FLATTEN SignedDivisionResult SignedBigInteger::divided_by(const SignedBigInteger& divisor) const
{
// Aa / Bb -> (A^B)q, Ar
bool result_sign = m_sign ^ divisor.m_sign;
auto unsigned_division_result = m_unsigned_data.divided_by(divisor.m_unsigned_data);
return {
{ move(unsigned_division_result.quotient), result_sign },
{ move(unsigned_division_result.remainder), m_sign }
};
}
void SignedBigInteger::set_bit_inplace(size_t bit_index)
{
m_unsigned_data.set_bit_inplace(bit_index);
}
bool SignedBigInteger::operator==(const SignedBigInteger& other) const
{
if (is_invalid() != other.is_invalid())
return false;
if (m_unsigned_data == 0 && other.m_unsigned_data == 0)
return true;
return m_sign == other.m_sign && m_unsigned_data == other.m_unsigned_data;
}
bool SignedBigInteger::operator!=(const SignedBigInteger& other) const
{
return !(*this == other);
}
bool SignedBigInteger::operator<(const SignedBigInteger& other) const
{
if (m_sign ^ other.m_sign)
return m_sign;
if (m_sign)
return other.m_unsigned_data < m_unsigned_data;
return m_unsigned_data < other.m_unsigned_data;
}
}

View File

@ -0,0 +1,159 @@
/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
namespace Crypto {
struct SignedDivisionResult;
class SignedBigInteger {
public:
SignedBigInteger(i32 x)
: m_sign(x < 0)
, m_unsigned_data(abs(x))
{
}
SignedBigInteger(UnsignedBigInteger&& unsigned_data, bool sign)
: m_sign(sign)
, m_unsigned_data(move(unsigned_data))
{
}
explicit SignedBigInteger(UnsignedBigInteger unsigned_data)
: m_sign(false)
, m_unsigned_data(move(unsigned_data))
{
}
SignedBigInteger()
: m_sign(false)
, m_unsigned_data()
{
}
static SignedBigInteger create_invalid()
{
return { UnsignedBigInteger::create_invalid(), false };
}
static SignedBigInteger import_data(const AK::StringView& data) { return import_data((const u8*)data.characters_without_null_termination(), data.length()); }
static SignedBigInteger import_data(const u8* ptr, size_t length);
size_t export_data(AK::ByteBuffer& data) const;
size_t export_data(const u8* ptr, size_t length) const
{
auto buffer = ByteBuffer::wrap(ptr, length);
return export_data(buffer);
}
static SignedBigInteger from_base10(StringView str);
String to_base10() const;
const UnsignedBigInteger& unsigned_value() const { return m_unsigned_data; }
const Vector<u32, STARTING_WORD_SIZE> words() const { return m_unsigned_data.words(); }
bool is_negative() const { return m_sign; }
void negate() { m_sign = !m_sign; }
void set_to_0() { m_unsigned_data.set_to_0(); }
void set_to(i32 other)
{
m_unsigned_data.set_to((u32)other);
m_sign = other < 0;
}
void set_to(const SignedBigInteger& other)
{
m_unsigned_data.set_to(other.m_unsigned_data);
m_sign = other.m_sign;
}
void invalidate()
{
m_unsigned_data.invalidate();
}
bool is_invalid() const { return m_unsigned_data.is_invalid(); }
// These get + 1 byte for the sign.
size_t length() const { return m_unsigned_data.length() + 1; }
size_t trimmed_length() const { return m_unsigned_data.trimmed_length() + 1; };
SignedBigInteger plus(const SignedBigInteger& other) const;
SignedBigInteger minus(const SignedBigInteger& other) const;
SignedBigInteger shift_left(size_t num_bits) const;
SignedBigInteger multiplied_by(const SignedBigInteger& other) const;
SignedDivisionResult divided_by(const SignedBigInteger& divisor) const;
SignedBigInteger plus(const UnsignedBigInteger& other) const;
SignedBigInteger minus(const UnsignedBigInteger& other) const;
SignedBigInteger multiplied_by(const UnsignedBigInteger& other) const;
SignedDivisionResult divided_by(const UnsignedBigInteger& divisor) const;
void set_bit_inplace(size_t bit_index);
bool operator==(const SignedBigInteger& other) const;
bool operator!=(const SignedBigInteger& other) const;
bool operator<(const SignedBigInteger& other) const;
bool operator==(const UnsignedBigInteger& other) const;
bool operator!=(const UnsignedBigInteger& other) const;
bool operator<(const UnsignedBigInteger& other) const;
private:
bool m_sign { false };
UnsignedBigInteger m_unsigned_data;
};
struct SignedDivisionResult {
Crypto::SignedBigInteger quotient;
Crypto::SignedBigInteger remainder;
};
}
inline const LogStream&
operator<<(const LogStream& stream, const Crypto::SignedBigInteger value)
{
if (value.is_invalid()) {
stream << "Invalid BigInt";
return stream;
}
if (value.is_negative())
stream << "-";
stream << value.unsigned_value();
return stream;
}
inline Crypto::SignedBigInteger
operator""_sbigint(const char* string, size_t length)
{
return Crypto::SignedBigInteger::from_base10({ string, length });
}

View File

@ -1,5 +1,6 @@
set(SOURCES
BigInt/UnsignedBigInteger.cpp
BigInt/SignedBigInteger.cpp
Cipher/AES.cpp
Hash/MD5.cpp
Hash/SHA1.cpp

View File

@ -161,6 +161,30 @@ static auto ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger&
return exp;
}
// Note: This function _will_ generate extremely huge numbers, and in doing so,
// it will allocate and free a lot of memory!
// Please use |ModularPower| if your use-case is modexp.
template<typename IntegerType>
static auto Power(const IntegerType& b, const IntegerType& e) -> IntegerType
{
IntegerType ep { e };
IntegerType base { b };
IntegerType exp { 1 };
while (!(ep < 1)) {
if (ep.words()[0] % 2 == 1)
exp.set_to(exp.multiplied_by(base));
// ep = ep / 2;
ep.set_to(ep.divided_by(2).quotient);
// base = base * base
base.set_to(base.multiplied_by(base));
}
return exp;
}
static void GCD_without_allocation(
const UnsignedBigInteger& a,
const UnsignedBigInteger& b,

View File

@ -29,6 +29,7 @@
#include <LibCore/EventLoop.h>
#include <LibCore/File.h>
#include <LibCrypto/Authentication/HMAC.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/Cipher/AES.h>
#include <LibCrypto/Hash/MD5.h>
@ -486,6 +487,14 @@ void bigint_division();
void bigint_base10();
void bigint_import_export();
void bigint_test_signed_fibo500();
void bigint_signed_addition_edgecases();
void bigint_signed_subtraction();
void bigint_signed_multiplication();
void bigint_signed_division();
void bigint_signed_base10();
void bigint_signed_import_export();
int aes_cbc_tests()
{
aes_cbc_test_name();
@ -1285,6 +1294,15 @@ int bigint_tests()
bigint_division();
bigint_base10();
bigint_import_export();
bigint_test_signed_fibo500();
bigint_signed_addition_edgecases();
bigint_signed_subtraction();
bigint_signed_multiplication();
bigint_signed_division();
bigint_signed_base10();
bigint_signed_import_export();
return 0;
}
@ -1299,6 +1317,18 @@ Crypto::UnsignedBigInteger bigint_fibonacci(size_t n)
}
return num1;
}
Crypto::SignedBigInteger bigint_signed_fibonacci(size_t n)
{
Crypto::SignedBigInteger num1(0);
Crypto::SignedBigInteger num2(1);
for (size_t i = 0; i < n; ++i) {
Crypto::SignedBigInteger t = num1.plus(num2);
num2 = num1;
num1 = t;
}
return num1;
}
void bigint_test_fibo500()
{
{
@ -1555,3 +1585,233 @@ void bigint_import_export()
}
}
}
void bigint_test_signed_fibo500()
{
{
I_TEST((Signed BigInteger | Fibonacci500));
bool pass = (bigint_signed_fibonacci(500).unsigned_value().words() == AK::Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_addition_edgecases()
{
{
I_TEST((Signed BigInteger | Borrow with zero));
Crypto::SignedBigInteger num1 { Crypto::UnsignedBigInteger { { UINT32_MAX - 3, UINT32_MAX } }, false };
Crypto::SignedBigInteger num2 { Crypto::UnsignedBigInteger { UINT32_MAX - 2 }, false };
if (num1.plus(num2).unsigned_value().words() == Vector<u32> { 4294967289, 0, 1 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Addition to other sign));
Crypto::SignedBigInteger num1 = INT32_MAX;
Crypto::SignedBigInteger num2 = num1;
num2.negate();
if (num1.plus(num2) == Crypto::SignedBigInteger { 0 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_subtraction()
{
{
I_TEST((Signed BigInteger | Simple Subtraction 1));
Crypto::SignedBigInteger num1(80);
Crypto::SignedBigInteger num2(70);
if (num1.minus(num2) == Crypto::SignedBigInteger(10)) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Simple Subtraction 2));
Crypto::SignedBigInteger num1(50);
Crypto::SignedBigInteger num2(70);
if (num1.minus(num2) == Crypto::SignedBigInteger { -20 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Subtraction with borrow));
Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { UINT32_MAX });
Crypto::SignedBigInteger num2(1);
Crypto::SignedBigInteger num3 = num1.plus(num2);
Crypto::SignedBigInteger result = num2.minus(num3);
num1.negate();
if (result == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Subtraction with large numbers));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(343);
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(218);
Crypto::SignedBigInteger result = num2.minus(num1);
auto expected = Crypto::UnsignedBigInteger { Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 } };
if ((result.plus(num1) == num2)
&& (result.unsigned_value() == expected)) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Subtraction with large numbers 2));
Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } });
Crypto::SignedBigInteger num2(Crypto::UnsignedBigInteger { Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 } });
Crypto::SignedBigInteger result = num1.minus(num2);
// this test only verifies that we don't crash on an assertion
PASS;
}
}
void bigint_signed_multiplication()
{
{
I_TEST((Signed BigInteger | Simple Multiplication));
Crypto::SignedBigInteger num1(8);
Crypto::SignedBigInteger num2(-251);
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
if (result == Crypto::SignedBigInteger { -2008 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Multiplications with big numbers 1));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
Crypto::SignedBigInteger num2(-12345678);
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
if (result.unsigned_value().words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 } && result.is_negative()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Multiplications with big numbers 2));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(341);
num1.negate();
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
if (result.unsigned_value().words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 } && result.is_negative()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_division()
{
{
I_TEST((Signed BigInteger | Simple Division));
Crypto::SignedBigInteger num1(27194);
Crypto::SignedBigInteger num2(-251);
auto result = num1.divided_by(num2);
Crypto::SignedDivisionResult expected = { Crypto::SignedBigInteger(-108), Crypto::SignedBigInteger(86) };
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Division with big numbers));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(386);
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(238);
num1.negate();
auto result = num1.divided_by(num2);
Crypto::SignedDivisionResult expected = {
Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 2300984486, 2637503534, 2022805584, 107 } }, true),
Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } }, true)
};
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Combined test));
auto num1 = bigint_signed_fibonacci(497);
auto num2 = bigint_signed_fibonacci(238);
num1.negate();
auto div_result = num1.divided_by(num2);
if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_base10()
{
{
I_TEST((Signed BigInteger | From String));
auto result = Crypto::SignedBigInteger::from_base10("-57195071295721390579057195715793");
if (result.unsigned_value().words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 } && result.is_negative()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | To String));
auto result = Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }, true }.to_base10();
if (result == "-57195071295721390579057195715793") {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_import_export()
{
{
I_TEST((Signed BigInteger | BigEndian Decode / Encode roundtrip));
u8 random_bytes[129];
u8 target_buffer[129];
random_bytes[0] = 1;
AK::fill_with_random(random_bytes + 1, 128);
auto encoded = Crypto::SignedBigInteger::import_data(random_bytes, 129);
encoded.export_data(target_buffer, 129);
if (memcmp(target_buffer, random_bytes, 129) != 0)
FAIL(Could not roundtrip);
else
PASS;
}
{
I_TEST((Signed BigInteger | BigEndian Encode / Decode roundtrip));
u8 target_buffer[128];
auto encoded = "-12345678901234567890"_sbigint;
auto size = encoded.export_data(target_buffer, 128);
auto decoded = Crypto::SignedBigInteger::import_data(target_buffer, size);
if (encoded != decoded)
FAIL(Could not roundtrip);
else
PASS;
}
}