JSSpecCompiler: Add SSA form building pass

This commit is contained in:
Dan Klishch 2023-10-01 23:01:10 -04:00 committed by Andrew Kaster
parent 20aa56891a
commit fbdb1a3d61
Notes: sideshowbarker 2024-07-17 07:14:09 +09:00
5 changed files with 598 additions and 0 deletions

View File

@ -9,6 +9,7 @@ set(SOURCES
Compiler/Passes/FunctionCallCanonicalizationPass.cpp
Compiler/Passes/IfBranchMergingPass.cpp
Compiler/Passes/ReferenceResolvingPass.cpp
Compiler/Passes/SSABuildingPass.cpp
Parser/CppASTConverter.cpp
Parser/Lexer.cpp
Parser/ParseError.cpp

View File

@ -0,0 +1,435 @@
/*
* Copyright (c) 2023, Dan Klishch <danilklishch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Queue.h>
#include "AST/AST.h"
#include "Compiler/GenericASTPass.h"
#include "Compiler/Passes/SSABuildingPass.h"
#include "Function.h"
namespace JSSpecCompiler {
void SSABuildingPass::process_function()
{
m_dtree_timer = 0;
m_order.clear();
m_mark_version = 1;
m_def_stack.clear();
m_next_id.clear();
m_undo_vector.clear();
m_graph = m_function->m_cfg;
with_graph(m_graph->blocks_count(), [&] {
compute_dominator_tree();
compute_dominance_frontiers();
place_phi_nodes();
rename_variables();
});
}
// ===== compute_dominator_tree =====
namespace {
class DSU {
struct NodeData {
size_t sdom;
size_t parent;
};
public:
DSU(size_t n)
: n(n)
{
m_nodes.resize(n);
for (size_t i = 0; i < n; ++i)
m_nodes[i] = { i, i };
}
NodeData get(size_t u)
{
if (m_nodes[u].parent == u)
return { n, u };
auto [sdom, root] = get(m_nodes[u].parent);
sdom = min(sdom, m_nodes[u].sdom);
return m_nodes[u] = { sdom, root };
}
void merge(size_t u, size_t v, size_t v_sdom)
{
m_nodes[v] = { v_sdom, u };
}
private:
size_t n;
Vector<NodeData> m_nodes;
};
}
void SSABuildingPass::compute_order(BasicBlockRef u, Vertex parent)
{
if (m_nodes[u->m_index].is_used)
return;
m_nodes[u->m_index].is_used = true;
Vertex reordered_u = m_order.size();
m_order.append(RefPtr<BasicBlock>(u).release_nonnull());
reordered_u->parent = parent;
for (auto* v : u->m_continuation->references())
compute_order(*v, reordered_u);
}
void SSABuildingPass::compute_dominator_tree()
{
size_t n = m_graph->blocks_count();
m_nodes.resize(n);
// Algorithm is from https://tanujkhattar.wordpress.com/2016/01/11/dominator-tree-of-a-directed-graph/ ,
// an author writes awful CP-style write-only code, but the explanation is pretty good.
// Step 1
compute_order(m_graph->start_block);
VERIFY(m_order.size() == n);
for (size_t i = 0; i < n; ++i)
m_order[i]->m_index = i;
m_graph->blocks = m_order;
for (size_t i = 0; i < n; ++i) {
Vertex u = i;
for (auto* reference : u.block()->m_continuation->references()) {
Vertex v { *reference };
v->incoming_edges.append(u);
u->outgoing_edges.append(v);
}
}
// Steps 2 & 3
DSU dsu(n);
for (size_t i = n - 1; i > 0; --i) {
Vertex u = i;
Vertex& current_sdom = u->semi_dominator;
current_sdom = n;
for (Vertex v : u->incoming_edges) {
if (v < u)
current_sdom = min(current_sdom, v);
else
current_sdom = min(current_sdom, dsu.get(v).sdom);
}
current_sdom->buckets.append(u);
for (Vertex w : u->buckets) {
Vertex v = dsu.get(w).sdom;
if (v->semi_dominator == w->semi_dominator)
w->immediate_dominator = v->semi_dominator;
else
w->immediate_dominator = v;
}
dsu.merge(u->parent, u, current_sdom);
}
m_nodes[0].immediate_dominator = invalid_node;
for (size_t i = 1; i < n; ++i) {
Vertex u = i;
if (u->immediate_dominator.is_invalid())
u->immediate_dominator = 0;
else if (u->immediate_dominator != u->semi_dominator)
u->immediate_dominator = u->immediate_dominator->immediate_dominator;
}
// Populate dtree_children & BasicBlock::immediate_dominator
for (size_t i = 0; i < n; ++i) {
Vertex u = i;
if (i != 0) {
u.block()->m_immediate_dominator = u->immediate_dominator.block();
u->immediate_dominator->dtree_children.append(u);
} else {
u.block()->m_immediate_dominator = nullptr;
}
}
}
// ===== compute_dominance_frontiers =====
template<typename... Args>
Vector<SSABuildingPass::Vertex> SSABuildingPass::unique(Args const&... args)
{
++m_mark_version;
Vector<Vertex> result;
(([&](auto const& list) {
for (Vertex u : list) {
if (u->mark != m_mark_version) {
u->mark = m_mark_version;
result.append(u);
}
}
})(args),
...);
return result;
}
void SSABuildingPass::compute_dtree_tin_tout(Vertex u)
{
u->tin = m_dtree_timer++;
for (Vertex v : u->dtree_children)
compute_dtree_tin_tout(v);
u->tout = m_dtree_timer++;
}
bool SSABuildingPass::is_strictly_dominating(Vertex u, Vertex v)
{
return u != v && u->tin <= v->tin && v->tout <= u->tout;
}
void SSABuildingPass::compute_dominance_frontiers()
{
compute_dtree_tin_tout(0);
// Algorithm from https://en.wikipedia.org/wiki/Static_single-assignment_form#Converting%20to%20SSA:~:text=their%20paper%20titled-,A%20Simple%2C%20Fast%20Dominance%20Algorithm,-%3A%5B13%5D .
// DF(u) = {w : !(u sdom w) /\ (\exists v \in incoming_edges(v) : u dom v)}
for (size_t wi = 0; wi < m_nodes.size(); ++wi) {
Vertex w = wi;
for (Vertex v : w->incoming_edges) {
Vertex u = v;
while (u != invalid_node && !is_strictly_dominating(u, w)) {
u->d_frontier.append(w);
u = u->immediate_dominator;
}
}
}
for (size_t i = 0; i < m_nodes.size(); ++i) {
Vertex u = i;
u->d_frontier = unique(u->d_frontier);
}
}
// ===== place_phi_nodes =====
namespace {
class VariableAssignmentCollector : private RecursiveASTVisitor {
public:
VariableAssignmentCollector(OrderedHashMap<NamedVariableDeclarationRef, Vector<BasicBlockRef>>& declarations)
: m_declarations(declarations)
{
}
void run(BasicBlockRef block)
{
m_current_block = block;
for (auto& expression : block->m_expressions)
run_in_subtree(expression);
run_in_const_subtree(block->m_continuation);
}
protected:
RecursionDecision on_entry(Tree tree) override
{
if (tree->is_statement())
TODO();
return RecursionDecision::Recurse;
}
void on_leave(Tree tree) override
{
if (auto binary_operation = as<BinaryOperation>(tree); binary_operation) {
if (binary_operation->m_operation != BinaryOperator::Assignment)
return;
if (auto variable = as<Variable>(binary_operation->m_left); variable) {
auto& vector = m_declarations.get(variable->m_name).value();
if (vector.is_empty() || vector.last() != m_current_block)
vector.append(m_current_block);
}
}
}
private:
BasicBlockRef m_current_block;
OrderedHashMap<NamedVariableDeclarationRef, Vector<BasicBlockRef>>& m_declarations;
};
}
void SSABuildingPass::add_phi_node(BasicBlockRef block, NamedVariableDeclarationRef decl)
{
BasicBlock::PhiNode node { .var = make_ref_counted<Variable>(decl) };
for (Vertex incoming : Vertex(block)->incoming_edges) {
BasicBlockRef incoming_block = incoming.block();
auto value = make_ref_counted<Variable>(decl);
node.branches.append({ .block = incoming_block, .value = value });
}
block->m_phi_nodes.append(move(node));
}
void SSABuildingPass::place_phi_nodes()
{
// Entry block has implicit declarations of all variables.
OrderedHashMap<NamedVariableDeclarationRef, Vector<BasicBlockRef>> m_declarations;
for (auto const& [name, var_decl] : m_function->m_local_variables)
m_declarations.set(var_decl, { m_order[0] });
m_declarations.set(m_function->m_return_value, { m_order[0] });
VariableAssignmentCollector collector(m_declarations);
for (auto const& block : m_order)
collector.run(block);
for (auto const& [decl, blocks] : m_declarations) {
++m_mark_version;
Queue<BasicBlockRef> queue;
for (auto const& block : blocks)
queue.enqueue(block);
while (!queue.is_empty()) {
Vertex u(queue.dequeue());
for (Vertex frontier : u->d_frontier) {
if (frontier->mark == m_mark_version)
continue;
frontier->mark = m_mark_version;
add_phi_node(frontier.block(), decl);
}
}
}
}
// ===== rename_variables =====
namespace {
template<typename CreateSSAVariableFunc, typename RenameVariableFunc>
class VariableRenamer : private RecursiveASTVisitor {
public:
VariableRenamer(CreateSSAVariableFunc create, RenameVariableFunc rename)
: m_create(create)
, m_rename(rename)
{
}
void run(BasicBlockRef block)
{
for (auto& expression : block->m_expressions)
run_in_subtree(expression);
run_in_const_subtree(block->m_continuation);
}
protected:
RecursionDecision on_entry(Tree tree) override
{
if (tree->is_statement())
TODO();
auto binary_operation = as<BinaryOperation>(tree);
if (binary_operation && binary_operation->m_operation == BinaryOperator::Assignment) {
run_in_subtree(binary_operation->m_right);
if (auto variable = as<Variable>(binary_operation->m_left); variable) {
m_create(variable->m_name);
m_rename(variable.release_nonnull());
} else {
run_in_subtree(binary_operation->m_left);
}
return RecursionDecision::Continue;
}
if (auto variable = as<Variable>(tree); variable) {
m_rename(variable.release_nonnull());
return RecursionDecision::Continue;
}
return RecursionDecision::Recurse;
}
private:
CreateSSAVariableFunc m_create;
RenameVariableFunc m_rename;
};
}
void SSABuildingPass::make_new_ssa_variable_for(NamedVariableDeclarationRef var)
{
m_undo_vector.append(var);
u64 id = 0;
if (auto it = m_next_id.find(var); it == m_next_id.end())
m_next_id.set(var, 1);
else
id = it->value++;
auto ssa_decl = make_ref_counted<SSAVariableDeclaration>(id);
m_function->m_local_ssa_variables.append(ssa_decl);
if (auto it = m_def_stack.find(var); it == m_def_stack.end())
m_def_stack.set(var, { ssa_decl });
else
it->value.append(ssa_decl);
}
void SSABuildingPass::rename_variable(VariableRef var)
{
var->m_ssa = m_def_stack.get(var->m_name).value().last();
}
void SSABuildingPass::rename_variables(Vertex u, Vertex from)
{
size_t rollback_point = m_undo_vector.size();
for (auto& phi_node : u.block()->m_phi_nodes) {
// TODO: Find the right branch index without iterating through all of the branches.
bool found = false;
for (auto& branch : phi_node.branches) {
if (branch.block->m_index == from) {
rename_variable(branch.value);
found = true;
break;
}
}
VERIFY(found);
}
if (u->mark == m_mark_version)
return;
u->mark = m_mark_version;
for (auto& phi_node : u.block()->m_phi_nodes) {
make_new_ssa_variable_for(phi_node.var->m_name);
rename_variable(phi_node.var);
}
VariableRenamer renamer(
[&](NamedVariableDeclarationRef decl) {
make_new_ssa_variable_for(move(decl));
},
[&](VariableRef var) {
rename_variable(move(var));
});
renamer.run(u.block());
for (size_t j : u->outgoing_edges)
rename_variables(j, u);
while (m_undo_vector.size() > rollback_point)
(void)m_def_stack.get(m_undo_vector.take_last()).value().take_last();
}
void SSABuildingPass::rename_variables()
{
for (auto const& [name, var_decl] : m_function->m_local_variables)
make_new_ssa_variable_for(var_decl);
make_new_ssa_variable_for(m_function->m_return_value);
++m_mark_version;
rename_variables(0);
m_function->reindex_ssa_variables();
}
}

View File

@ -0,0 +1,91 @@
/*
* Copyright (c) 2023, Dan Klishch <danilklishch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/HashMap.h>
#include "Compiler/CompilerPass.h"
#include "Compiler/ControlFlowGraph.h"
#include "Compiler/EnableGraphPointers.h"
namespace JSSpecCompiler {
// TODO: Add a LOT of unit tests.
class SSABuildingPass
: public IntraproceduralCompilerPass
, private EnableGraphPointers<SSABuildingPass, BasicBlockRef> {
public:
inline static constexpr StringView name = "ssa-building"sv;
using IntraproceduralCompilerPass::IntraproceduralCompilerPass;
protected:
void process_function() override;
private:
friend EnableGraphPointers;
class Vertex : public VertexBase {
public:
using VertexBase::VertexBase;
BasicBlockRef block() const { return m_instance->m_order[m_index]; }
};
void compute_order(BasicBlockRef u, Vertex parent = invalid_node);
void compute_dominator_tree();
template<typename... Args>
Vector<Vertex> unique(Args const&... args);
void compute_dtree_tin_tout(Vertex u);
bool is_strictly_dominating(Vertex u, Vertex v);
void compute_dominance_frontiers();
void add_phi_node(BasicBlockRef block, NamedVariableDeclarationRef decl);
void place_phi_nodes();
void make_new_ssa_variable_for(NamedVariableDeclarationRef var);
void rename_variable(VariableRef var);
void rename_variables(Vertex u, Vertex from = invalid_node);
void rename_variables();
struct NodeData {
Vector<Vertex> incoming_edges;
Vector<Vertex> outgoing_edges;
Vector<Vertex> buckets;
bool is_used = false;
Vertex parent;
Vertex semi_dominator;
Vertex immediate_dominator;
Vector<Vertex> dtree_children;
u64 tin, tout;
Vector<Vertex> d_frontier;
HashMap<NamedVariableDeclarationRef, Vertex> phi_nodes;
u64 mark = 0;
};
u64 m_dtree_timer;
Vector<NodeData> m_nodes;
Vector<NonnullRefPtr<BasicBlock>> m_order;
u64 m_mark_version;
HashMap<NamedVariableDeclarationRef, Vector<SSAVariableDeclarationRef>> m_def_stack;
HashMap<NamedVariableDeclarationRef, u64> m_next_id;
Vector<NamedVariableDeclarationRef> m_undo_vector;
ControlFlowGraph* m_graph;
};
}

View File

@ -249,3 +249,72 @@ BinaryOperation Assignment
MathematicalConstant 4
ControlFlowJump jump=2
===== AST after ssa-building =====
f():
TreeList
IfElseIfChain
UnresolvedReference cond1
TreeList
BinaryOperation Assignment
Var a@1
MathematicalConstant 1
IfElseIfChain
UnresolvedReference cond2
TreeList
BinaryOperation Assignment
Var b@1
Var a@1
TreeList
BinaryOperation Assignment
Var b@3
MathematicalConstant 3
TreeList
BinaryOperation Assignment
Var b@4
MathematicalConstant 4
ReturnNode
Var b@2
===== CFG after ssa-building =====
f():
0:
ControlFlowBranch true=1 false=6
UnresolvedReference cond1
1:
BinaryOperation Assignment
Var a@1
MathematicalConstant 1
ControlFlowBranch true=2 false=5
UnresolvedReference cond2
2:
BinaryOperation Assignment
Var b@1
Var a@1
ControlFlowJump jump=3
3:
a@2 = phi(2: a@1, 5: a@1, 6: a@0)
b@2 = phi(2: b@1, 5: b@3, 6: b@4)
BinaryOperation Assignment
Var $return@1
Var b@2
ControlFlowJump jump=4
4:
ControlFlowFunctionReturn
Var $return@1
5:
BinaryOperation Assignment
Var b@3
MathematicalConstant 3
ControlFlowJump jump=3
6:
BinaryOperation Assignment
Var b@4
MathematicalConstant 4
ControlFlowJump jump=3

View File

@ -13,6 +13,7 @@
#include "Compiler/Passes/FunctionCallCanonicalizationPass.h"
#include "Compiler/Passes/IfBranchMergingPass.h"
#include "Compiler/Passes/ReferenceResolvingPass.h"
#include "Compiler/Passes/SSABuildingPass.h"
#include "Function.h"
#include "Parser/CppASTConverter.h"
#include "Parser/SpecParser.h"
@ -108,6 +109,7 @@ ErrorOr<int> serenity_main(Main::Arguments arguments)
pipeline.add_compilation_pass<ReferenceResolvingPass>();
pipeline.add_compilation_pass<CFGBuildingPass>();
pipeline.add_compilation_pass<CFGSimplificationPass>();
pipeline.add_compilation_pass<SSABuildingPass>();
pipeline.for_each_step_in(passes_to_dump_ast, [](CompilationStepWithDumpOptions& step) {
step.dump_ast = true;