Prior to this change, both uid_t and gid_t were typedef'ed to `u32`.
This made it easy to use them interchangeably. Let's not allow that.
This patch adds UserID and GroupID using the AK::DistinctNumeric
mechanism we've already been employing for pid_t/ProcessID.
Previously, we would try to acquire a reference to the all processes
lock or other contended resources while holding both the scheduler lock
and the thread's blocker lock. This could lead to a deadlock if we
actually have to block on those other resources.
There are callers of processes().with or processes().for_each that
require interrupts to be disabled. Taking a Mutexe with interrupts
disabled is a recipe for deadlock, so convert this to a Spinlock.
There's no need to disable interrupts when trying to access an inode's
shared vmobject. Additionally, Inode::shared_vmobject() acquires a Mutex
which is a recipe for deadlock if acquired with interrupts disabled.
We have seen cases where the map fails, but we return the region
to the caller, causing them to page fault later on when they touch
the region.
The fix is to always observe the return code of map/remap.
This was only ever called immediately after FutexQueue::try_remove()
to VERIFY() that the state looks exactly like it should after returning
from try_remove().
This has several benefits:
1) We no longer just blindly derefence a null pointer in various places
2) We will get nicer runtime error messages if the current process does
turn out to be null in the call location
3) GCC no longer complains about possible nullptr dereferences when
compiling without KUBSAN
This makes for nicer handling of errors compared to checking whether a
RefPtr is null. Additionally, this will give way to return different
types of errors in the future.
We are not using this for anything and it's just been sitting there
gathering dust for well over a year, so let's stop carrying all this
complexity around for no good reason.
This patch replaces the remaining users of this API with the new
try_copy_kstring_from_user() instead. Note that we still convert to a
String for continued processing, and I've added FIXME about continuing
work on using KString all the way.
This patch removes KResult::operator int() and deals with the fallout.
This forces a lot of code to be more explicit in its handling of errors,
greatly improving readability.
The implementation uses try_copy_kstring_from_user to allocate a kernel
string using, but does not use the length of the resulting string.
The size parameter to the syscall is untrusted, as try copy kstring will
attempt to perform a `safe_strlen(..)` on the user mode string and use
that value for the allocated length of the KString instead. The bug is
that we are printing the kstring, but with the usermode size argument.
During fuzzing this resulted in us walking off the end of the allocated
KString buffer printing garbage (or any kernel data!), until we stumbled
in to the KSym region and hit a fatal page fault.
This is technically a kernel information disclosure, but (un)fortunately
the disclosure only happens to the Bochs debug port, and or the serial
port if serial debugging is enabled. As far as I can tell it's not
actually possible for an untrusted attacker to use this to do something
nefarious, as they would need access to the host. If they have host
access then they can already do much worse things :^).
The only two paths for copying strings in the kernel should be going
through the existing Userspace<char const*>, or StringArgument methods.
Lets enforce this by removing the option for using the raw cstring APIs
that were previously available.
The compiler can re-order the structure (class) members if that's
necessary, so if we make Process to inherit from ProcFSExposedComponent,
even if the declaration is to inherit first from ProcessBase, then from
ProcFSExposedComponent and last from Weakable<Process>, the members of
class ProcFSExposedComponent (including the Ref-counted parts) are the
first members of the Process class.
This problem made it impossible to safely use the current toggling
method with the write-protection bit on the ProcessBase members, so
instead of inheriting from it, we make its members the last ones in the
Process class so we can safely locate and modify the corresponding page
write protection bit of these values.
We make sure that the Process class doesn't expand beyond 8192 bytes and
the protected values are always aligned on a page boundary.
If you want to record perf events, just enable profiling. This allows us
to add random perf events to programs without littering the file system
with perfcore files.
Making userspace provide a global string ID was silly, and made the API
extremely difficult to use correctly in a global profiling context.
Instead, simply make the kernel do the string ID allocation for us.
This also allows us to convert the string storage to a Vector in the
kernel (and an array in the JSON profile data.)
This syscall allows userspace to register a keyed string that appears in
a new "strings" JSON object in profile output.
This will be used to add custom strings to profile signposts. :^)
This patch adds a vDSO-like mechanism for exposing the current time as
an array of per-clock-source timestamps.
LibC's clock_gettime() calls sys$map_time_page() to map the kernel's
"time page" into the process address space (at a random address, ofc.)
This is only done on first call, and from then on the timestamps are
fetched from the time page.
This first patch only adds support for CLOCK_REALTIME, but eventually
we should be able to support all clock sources this way and get rid of
sys$clock_gettime() in the kernel entirely. :^)
Accesses are synchronized using two atomic integers that are incremented
at the start and finish of the kernel's time page update cycle.
Leave interrupts enabled so that we can still process IRQs. Critical
sections should only prevent preemption by another thread.
Co-authored-by: Tom <tomut@yahoo.com>
By making these functions static we close a window where we could get
preempted after calling Processor::current() and move to another
processor.
Co-authored-by: Tom <tomut@yahoo.com>
This commit implements the ISO 9660 filesystem as specified in ECMA 119.
Currently, it only supports the base specification and Joliet or Rock
Ridge support is not present. The filesystem will normalize all
filenames to be lowercase (same as Linux).
The filesystem can be mounted directly from a file. Loop devices are
currently not supported by SerenityOS.
Special thanks to Lubrsi for testing on real hardware and providing
profiling help.
Co-Authored-By: Luke <luke.wilde@live.co.uk>