This makes GTreeView able to support multi-column models!
Only one column can be the "tree column", this is column 0 by default
but can be changed by overriding GModel::tree_column().
When the filesystem model is updated, it is rebuilt. This means dangling
indexes inside the TreeView metadata table will have old information and random
directories will toggle open. Clearing the table alleviates this issue.
The kernel now supports basic profiling of all the threads in a process
by calling profiling_enable(pid_t). You finish the profiling by calling
profiling_disable(pid_t).
This all works by recording thread stacks when the timer interrupt
fires and the current thread is in a process being profiled.
Note that symbolication is deferred until profiling_disable() to avoid
adding more noise than necessary to the profile.
A simple "/bin/profile" command is included here that can be used to
start/stop profiling like so:
$ profile 10 on
... wait ...
$ profile 10 off
After a profile has been recorded, it can be fetched in /proc/profile
There are various limits (or "bugs") on this mechanism at the moment:
- Only one process can be profiled at a time.
- We allocate 8MB for the samples, if you use more space, things will
not work, and probably break a bit.
- Things will probably fall apart if the profiled process dies during
profiling, or while extracing /proc/profile
When a GAction is activated by a menu, or by a toolbar button, you can
now use GAction::activator() to get a pointer to whomever activated it.
This can be used to implement context-specific behaviors in situations
where the same action is exposed through multiple paths.
This addresses an issue that was brought up in #826.
We now take advantage of SharedBuffers being purgeable memory by
setting the volatile flag on window back buffers while not painting
into them.
This means that one of the two backing stores used by each window
is purgeable+volatile most of the time, allowing the kernel to purge
it to recover memory if needed.
Note that this is only relevant when double-buffering is turned on,
but since that is the default, this does affect most apps. :^)
This patch makes SharedBuffer use a PurgeableVMObject as its underlying
memory object.
A new syscall is added to control the volatile flag of a SharedBuffer.
This patch exposes some fields about purgeable memory regions.
We now also show total purgeable volatile and non-volatile memory in
the big process table.
It's now possible to get purgeable memory by using mmap(MAP_PURGEABLE).
Purgeable memory has a "volatile" flag that can be set using madvise():
- madvise(..., MADV_SET_VOLATILE)
- madvise(..., MADV_SET_NONVOLATILE)
When in the "volatile" state, the kernel may take away the underlying
physical memory pages at any time, without notifying the owner.
This gives you a guilt discount when caching very large things. :^)
Setting a purgeable region to non-volatile will return whether or not
the memory has been taken away by the kernel while being volatile.
Basically, if madvise(..., MADV_SET_NONVOLATILE) returns 1, that means
the memory was purged while volatile, and whatever was in that piece
of memory needs to be reconstructed before use.
Using int was a mistake. This patch changes String, StringImpl,
StringView and StringBuilder to use size_t instead of int for lengths.
Obviously a lot of code needs to change as a result of this.
This bitmap is displayed alongside the dragged text underneath the
mouse cursor while dragging.
This will be a perfect fit for dragging e.g files around. :^)
This function returns the bitmap itself if it's already backed by a
SharedBuffer object, otherwise it creates a shareable copy of itself
and returns that.
This patch enables basic drag&drop between applications.
You initiate a drag by creating a GDragOperation object and calling
exec() on it. This creates a nested event loop in the calling program
that only returns once the drag operation has ended.
On the receiving side, you get a call to GWidget::drop_event() with
a GDropEvent containing information about the dropped data.
The only data passed right now is a piece of text that's also used
to visually indicate that a drag is happening (by showing the text in
a little box that follows the mouse cursor around.)
There are things to fix here, but we're off to a nice start. :^)
These should be the last thing needed to make SDL build with threads
support. I think we can survive just fine with stubs of these for now,
especially given that the kernel doesn't care super much about thread
priorities anyway.
This patch adds pthread_key_create() and pthread_{get,set}specific().
There's a maximum of 64 thread-specific keys for simplicity.
Key destructors are not invoked on thread exit.
This feels like a pretty naive implementation, but I think it can work.
Basically each waiter creates an object on its stack that is then
added to a linked list inside by the pthread_cond_t.
Signalling is then done by walking the list and unsetting the "waiting"
flag on as many of the waiters as you like.
Instead of passing the PIDs back and forth in a handshake "Greet"
message, just use getsockopt(SO_PEERCRED) on both sides to get the same
information from the kernel.
This is a nice little simplification of the IPC protocol, although it
does not get rid of the handshake since we still have to pass the
"client ID" from the server to each client so they know how to refer
to themselves. This might not be necessary and we might be able to get
rid of this later on.
This extends the opportunistic protection of empty-but-kept-around to
also cover BigAllocationBlocks. Since we only cache 4KB BAB's at the
moment, this sees limited use, but it does work.
We now keep a separate queue of empty ChunkedBlocks in each allocator.
The underlying memory for each block is mprotect'ed with PROT_NONE to
provoke crashes on use-after-free.
This is not going to catch *all* use-after-frees, but if it catches
some, that's still pretty nice. :^)
The malloc memory region names are now updated to reflect their reuse
status: "malloc: ChunkedBlock(size) (free/reused)"