Previously in the aarch64 Kernel, this would cause dbgln() to actually
print more characters of the next string in memory, because strings in
the Kernel are not zero terminated by default. Prevent this by using the
passed in length of the string.
When calling dbgln(), the formatting code in AK/Format.h calls
Processor::is_initialized() to determine whether to add some text about
the current processor to the debug output. Instead of crashing, we just
return false, such that we can use dbgln() etc in the aarch64 Kernel.
This allows us to use the AK formatting functions in the aarch64 Kernel.
Also add FIXME to make sure that this file will be removed when the
proper abstractions are in place in the normal Kernel/kprintf.cpp.
The compiler figured out that the MemoryManager is not initialised, and
thus MemoryManager::the() cannot return a valid reference. Once the
necesarry code is in place, this compiler flag can be removed.
Coverage tools like LLVM's source-based coverage or GNU's --coverage
need to be able to write out coverage files from any binary, regardless
of its security posture. Not ignoring these pledges and veils means we
can't get our coverage data out without playing some serious tricks.
However this is pretty terrible for normal exeuction, so only skip these
checks when we explicitly configured userspace for coverage.
It doesn't make sense after introduction of routing table which allows
having multiple gateways for every interface, and isn't used by any of
the userspace programs now.
This will allow using the console tty and WindowServer regardless of
your kernel command line. Also this fixes a bug where, when booting in
text mode, the console was in graphical mode, and would not accept
input.
That code used the old AK::Result container, which leads to overly
complicated initialization flow when trying to figure out the correct
partition table type. Instead, when using the ErrorOr container the code
is much simpler and more understandable.
Previously the system had no concept of assigning different routes for
different destination addresses as the default gateway IP address was
directly assigned to a network adapter. This default gateway was
statically assigned and any update would remove the previously existing
route.
This patch is a beginning step towards implementing #180. It implements
a simple global routing table that is referenced during the routing
process. With this implementation it is now possible for a user or
service (i.e. DHCP) to dynamically add routes to the table.
The routing table will select the most specific route when possible. It
will select any direct match between the destination and routing entry
addresses. If the destination address overlaps between multiple entries,
the Kernel will use the longest prefix match, or the longest number of
matching bits between the destination address and the routing address.
In the event that there is no entries found for a specific destination
address, this implementation supports entries for a default route to be
set for any specified interface.
This is a small first step towards enhancing the system's routing
capabilities. Future enhancements would include referencing a
configuration file at boot to load pre-defined static routes.
I've noticed that the KVM hypervisor vendor ID string contained null
terminators in the serialized JSON string in /proc/cpuinfo - let's avoid
that, and err on the side of caution and strip them from all strings
built from CPUID register values. They may not be fixed width after all.
This creates all interfaces when the device is enumerated, with a link
to the configuration that it is a part of. As such, a new class,
`USBInterface` has been introduced to express this state.
Some other parts of the USB stack may require us to perform a control
transfer. Instead of abusing `friend` to expose the default pipe, let's
just expose it via a function.
This also introduces a new class, `USBConfiguration` that stores a
configuration. The device, when instructed, sets this configuration and
holds a pointer to it so we have a record of what configuration is
currently active.
AnonymousFile always allocates in multiples of a page size when created
with anon_create. This is especially an issue if we use AnonymousFile
shared memory to store a shared data structure that isn't exactly a
multiple of a page in size. Therefore, we can just allow mmaps of
AnonymousFile to map only an initial part of the shared memory.
This makes SharedSingleProducerCircularQueue work when it's introduced
later.
In most cases it's safe to abort the requested operation and go forward,
however, in some places it's not clear yet how to handle these failures,
therefore, we use the MUST() wrapper to force a kernel panic for now.
On the QEMU microvm machine type, it became apparent that the BIOS was
not setting the i8042 controller to function as expected. To ensure that
the controller is always outputting correct scan codes, set it to scan
code 2 and enable first port translation to ensure all scan codes are
translated to scan code set 1. This is the expected behavior when using
SeaBIOS, but on qboot (the BIOS for the QEMU microvm machine type), the
firmware doesn't take care of this so we need to do this ourselves.
This keeps us from accidentally overwriting an already set region name,
for example when we are mapping a file (as, in this case, the file name
is already stored in the region).
Since KASLR was added kernel_load_base only signifies the address at
which the kernel image start, not the start of kernel memory, meaning
that a valid kernel stack can be allocated before it in memory.
We use kernel_mapping_base, the lowest address covered by the kernel
page directory, as the minimal address when performing safety checks
during backtrace generation.