This library is meant to provide C++-style wrappers over lower
level APIs such as syscalls and pthread_* functions, as well as
utilities for easily running pieces of logic on different
threads.
This new version can do three things:
* When invoked as `mount`, it will print out a list of mounted filesystem,
* When invoked as `mount -a`, it will try to mount filesystems
listed in /etc/fstab,
* When invoked as `mount device mountpoint -t fstype`, it will mount that
device on that mountpoint. If not specified, fstype defaults to ext2.
All programs that have a CEventLoop now allow local socket connections
via /tmp/rpc.PID and will dump a serialized JSON array of all the live
CObjects in the program onto connecting sockets.
Also added a small /bin/rpcdump tool that connects to an RPC socket and
produces a raw dump of the JSON that comes out.
It is now possible to unmount file systems from the VFS via `umount`.
It works via looking up the `fsid` of the filesystem from the `Inode`'s
metatdata so I'm not sure how fragile it is. It seems to work for now
though as something to get us going.
This patch adds the mprotect() syscall to allow changing the protection
flags for memory regions. We don't do any region splitting/merging yet,
so this only works on whole mmap() regions.
Added a "crash -r" flag to verify that we crash when you attempt to
write to read-only memory. :^)
This is a very simple version of the nc (netcat) command. It only
supports outgoing TCP connections, and has no options aside from the
target host and port.
This is comprised of five small changes:
* Keep a counter for tx/rx packets/bytes per TCP socket
* Keep a counter for tx/rx packets/bytes per network adapter
* Expose that data in /proc/net_tcp and /proc/netadapters
* Convert /proc/netadapters to JSON
* Fix up ifconfig to read the JSON from netadapters
This has a known bug in that you can't specify a negative size value.
This bug stems from the argument parser, and once it's fixed there,
everything should work here.
Fork the IPC Connection classes into Server:: and Client::ConnectionNG.
The new IPC messages are serialized very snugly instead of using the
same generic data structure for all messages.
Remove ASAPI.h since we now generate all of it from AudioServer.ipc :^)
It is now possible to mount ext2 `DiskDevice` devices under Serenity on
any folder in the root filesystem. Currently any user can do this with
any permissions. There's a fair amount of assumptions made here too,
that might not be too good, but can be worked on in the future. This is
a good start to allow more dynamic operation under the OS itself.
It is also currently impossible to unmount and such, and devices will
fail to mount in Linux as the FS 'needs to be cleaned'. I'll work on
getting `umount` done ASAP to rectify this (as well as working on less
assumption-making in the mount syscall. We don't want to just be able
to mount DiskDevices!). This could probably be fixed with some `-t`
flag or something similar.
Give the mixer a main volume value (percent) that we scale all the
outgoing samples by (before clipping.)
Also add a simple "avol" program for querying and setting the volume:
- "avol" prints the current volume.
- "avol 200" sets the main mix volume to 200%
Show some information about the file we're playing, and display how many
samples we've played out of how many total.
This might be a bit buggy as I haven't tested it with many different files,
but it's a start. :^)
This allows us to carry the same buffer all the way from the WAV loader
to the AudioServer mixer.
This alleviates some of the stutter, but there's still a noticeable
skip when switching buffers. We're gonna need to do better. :^)
I had to solve a bunch of things simultaneously to make this work.
Refactor AWavLoader to be a streaming loader rather than a one-shot one.
The constructor parses the header, and if everything looks good, you can
repeatedly ask the AWavLoader for sample buffers until it runs out.
Also send a message from AudioServer when a buffer has finished playing.
That allows us to implement a blocking variant of play().
Use all of this in aplay to play WAV files chunk-at-a-time.
This is definitely not perfect and it's a little glitchy and skippy,
but I think it's a step in the right direction.
The syscall is quite simple:
int watch_file(const char* path, int path_length);
It returns a file descriptor referring to a "InodeWatcher" object in the
kernel. It becomes readable whenever something changes about the inode.
Currently this is implemented by hooking the "metadata dirty bit" in
Inode which isn't perfect, but it's a start. :^)
Rolling with the theme of adding a dialog to shutdown the machine, it is
probably nice to have a way to reboot the machine without performing a full
system powerdown.
A reboot program has been added to `/bin/` as well as a corresponding
`syscall` (SC_reboot). This syscall works by attempting to pulse the 8042
keyboard controller. Note that this is NOT supported on new machines, and
should only be a fallback until we have proper ACPI support.
The implementation causes a triple fault in QEMU, which then restarts the
system. The filesystems are locked and synchronized before this occurs,
so there shouldn't be any corruption etctera.
Instead of LibGUI and WindowServer building their own copies of the drawing
and graphics code, let's it in a separate LibDraw library.
This avoids building the code twice, and will encourage better separation
of concerns. :^)
As a consequence, move to use an explicit handshake() method rather than
calling virtuals from the constructor. This seemed to not bother
AClientConnection, but LibGUI crashes (rightfully) because of it.
The center of this is now an ABuffer class in LibAudio.
ABuffer contains ASample, which has two channels (left/right) in
floating point for mixing purposes, in 44100hz.
This means that the loaders (AWavLoader in this case) needs to do some
manipulation to get things in the right format, but that we don't need
to care after format loading is done.
While we're at it, do some correctness fixes. PCM data is unsigned if
it's 8 bit, but 16 bit is signed. And /dev/audio also wants signed 16
bit audio, so give it what it wants.
On top of this, AudioServer now accepts requests to play a buffer.
The IPC mechanism here is pretty much a 1:1 copy-paste from
LibGUI/WindowServer. It can be generalized more in the future, but for
now I want to get AudioServer working decently first :)
Additionally, add a little "aplay" tool to load and play a WAV file. It
will break with large WAVs (run out of memory, heh...) but it's a start.
Future work needs to make AudioServer block buffer submission from
clients until it has played the buffer they are requesting to play.