This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
These wrappers will make it much easier to do various operations on the
different ArrayBuffer-related classes in LibWeb compared to the current
solution, which is to just accept a Handle<Object> everywhere (and use
"any" in the *.idl files).
Co-Authored-By: Matthew Olsson <mattco@serenityos.org>
With this change, we now have ~1200 CellAllocators across both LibJS and
LibWeb in a normal WebContent instance.
This gives us a minimum heap size of 4.7 MiB in the scenario where we
only have one cell allocated per type. Of course, in practice there will
be many more of each type, so the effective overhead is quite a bit
smaller than that in practice.
I left a few types unconverted to this mechanism because I got tired of
doing this. :^)
There were some unhandled paths due to the liberally typed XHR response
object. This patch flushes out those issues by using a tighter type set
in the Variant. (NonnullGCPtr<Object> instead of Value)
This ports XHR's fire_progress_event() and request_error_steps() to new
FlyString.
Signature of fire_progress_event() parameter event_name was changed
from 'String const&' to 'FlyString const&'.
This makes XHR now rely on Fetch, which allows it to correct send
Origin and Referer headers, CORS-preflight and filtering and many other
goodies.
The main thing that's missing is Streams, which means we can't properly
produce progress events or switch to the Loading ready state.
This also doesn't implement the Document responseType just yet.
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
This needs to happen before prototype/constructor intitialization can be
made lazy. Otherwise, GC could run during the C++ constructor and try to
collect the object currently being created.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
The XHR gives us a set of conditions where XHR objects must survive
garbage collection, even when there are no pointers to them on the heap.
This patch implements those conditions using the new cell
self-protection mechanism in LibJS.
Let's stop putting generic types and AOs from the Web IDL spec into
the Bindings namespace and directory in LibWeb, and instead follow our
usual naming rules of 'directory = namespace = spec name'. The IDL
namespace is already used by LibIDL, so Web::WebIDL seems like a good
choice.
This is a monster patch that turns all EventTargets into GC-allocated
PlatformObjects. Their C++ wrapper classes are removed, and the LibJS
garbage collector is now responsible for their lifetimes.
There's a fair amount of hacks and band-aids in this patch, and we'll
have a lot of cleanup to do after this.
This patch moves the following things to being GC-allocated:
- Bindings::CallbackType
- HTML::EventHandler
- DOM::IDLEventListener
- DOM::DOMEventListener
- DOM::NodeFilter
Note that we only use PlatformObject for things that might be exposed
to web content. Anything that is only used internally inherits directly
from JS::Cell instead, making them a bit more lightweight.
Similar to create() in LibJS, wrap() et al. are on a low enough level to
warrant passing a Realm directly instead of relying on the current realm
from the VM, as a wrapper may need to be allocated while no JS is being
executed.
The Fetch spec unfortunately will cause a name clash between the Request
concept and the Request JS object - both cannot live in the Web::Fetch
namespace, and WrapperGenerator generally assumes `Web::<Name>` for
things living in the `<Name>/` subdirectory, so let's instead move infra
code into its own namespace - it already sits in a (sub-)subdirectory
anyway.