We now no longer hardcode the sigreturn syscall in
the signal trampoline. Because of the way inline asm inputs
work, I've had to enclose the trampoline in the function
signal_trampoline_dummy.
This is a freelist allocator with static size classes that works as a
complement to the generic kmalloc(). It's a lot faster than kmalloc()
since allocation just means popping from the freelist.
It's also significantly more compact when there are a lot of objects
smaller than the minimum kmalloc chunk size (32 bytes.)
This patch enables it for the Region and PhysicalPage classes.
In the PhysicalPage (8 bytes) case, it's a huge improvement since we
no longer waste 75% of the storage allocated.
There are also a number of ways this can be improved, so let's keep
working on it going forward.
This patch makes it possible to *run* text files that start with the
characters "#!" followed by an interpreter.
I've tested this with both the Serenity built-in shell and the Bash
shell, and it works as expected. :^)
If we receive an IRQ while the idle task is running, prevent it from
re-halting the CPU after the IRQ handler returns.
Instead have the idle task yield to the scheduler, so we can see if
the IRQ has unblocked something.
The introduction fchdir in the middle of the EUMERATE_SYSCALLS
expression changed other syscall numbers, which broke compatibility.
This commit fixes that by moving it to the end.
The fchdir() function is equivalent to chdir() except that the
directory that is to be the new current working directory is
specified by a file descriptor.
Also added some assertions to DirectoryEntry in case someone tries to
instantiate them with names that would overflow the name buffer.
DirectoryEntry is a crappy data structure, and the name buffer is also
crappy. Added a FIXME about replacing it with something nicer.
Before this patch, the DirectoryEntry::name buffer would overflow if
you did "touch extremely-long-file-name". Duh.
Fixes#538.
Due to the changes in signal handling m_kernel_stack_for_signal_handler_region
and m_signal_stack_user_region are no longer necessary, and so, have been
removed. I've also removed the similarly reduntant m_tss_to_resume_kernel.
This approach is a bit naiive - whenever we send a packet out, we
check to see if there are any other packets we should try to send.
This works well enough for a busy connection but not very well for a
quiet one. Ideally we would check for not-acked packets on some kind
of timer, and use the length of this not-acked list as feedback to
throttle the writes coming from userspace.
This allows us to take advantage of unsolicited ARP replies, such as
those that are emitted by many systems after their network interfaces
are enabled, or after their DHCP client sets their IP.
This also makes us a bit more vulnerable to ARP flooding, but we need
some kind of eviction strategy anyway, so we can deal with that later.
An incoming socket should only be considered connected after a
program has received it from accept(). Before that point, it's only
"half" open, and it might not ever actually be served to a program.
Socket::accept is where m_connected is correctly set.
An interactive application to modify the current display settings, such as
the current wallpaper as well as the screen resolution. Currently we're
adding the resolutions ourselves, because there's currently no way to
detect was resolutions the current display adapter supports (or at least
I can't see one... Maybe VBE does and I'm stupid). It even comes with
a very nice template'd `ItemList` that can support a vector of any type,
which makes life much simpler.
This patch adds support for TLS according to the x86 System V ABI.
Each thread gets a thread-specific memory region, and the GS segment
register always points _to a pointer_ to the thread-specific memory.
In other words, to access thread-local variables, userspace programs
start by dereferencing the pointer at [gs:0].
The Process keeps a master copy of the TLS segment that new threads
should use, and when a new thread is created, they get a copy of it.
It's basically whatever the PT_TLS program header in the ELF says.
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
This commit drastically changes how signals are handled.
In the case that an unblocked thread is signaled it works much
in the same way as previously. However, when a blocking syscall
is interrupted, we set up the signal trampoline on the user
stack, complete the blocking syscall, return down the kernel
stack and then jump to the handler. This means that from the
kernel stack's perspective, we only ever get one system call deep.
The signal trampoline has also been changed in order to properly
store the return value from system calls. This is necessary due
to the new way we exit from signaled system calls.
This can play anything that AWavLoader can load (so obviously only WAV
files at the moment.)
It works by having a timer that wakes up every 100ms and tries to send
a sample buffer to the AudioServer. If our server-side queue is full
then we wait until the next timer iteration and try again.
We display the most recently enqueued sample buffer in a nice little
widget that just plots the samples in green-on-black. :^)