The HTMLMediaElement, for example, contains spec text which states any
ongoing fetch process must be "stopped". The spec does not indicate how
to do this, so our implementation is rather ad-hoc.
Our current implementation may cause a crash in places that assume one
of the fetch algorithms that we set to null is *not* null. For example:
if (fetch_params.process_response) {
queue_fetch_task([]() {
fetch_params.process_response();
};
}
If the fetch process is stopped after queuing the fetch task, but not
before the fetch task is run, we will crash when running this fetch
algorithm.
We now track queued fetch tasks on the fetch controller. When the fetch
process is stopped, we cancel any such pending task.
It is a little bit awkward maintaining a fetch task ID. Ideally, we
could use the underlying task ID throughout. But we do not have access
to the underlying task nor its ID when the task is running, at which
point we need some ID to remove from the pending task list.
This URL library ends up being a relatively fundamental base library of
the system, as LibCore depends on LibURL.
This change has two main benefits:
* Moving AK back more towards being an agnostic library that can
be used between the kernel and userspace. URL has never really fit
that description - and is not used in the kernel.
* URL _should_ depend on LibUnicode, as it needs punnycode support.
However, it's not really possible to do this inside of AK as it can't
depend on any external library. This change brings us a little closer
to being able to do that, but unfortunately we aren't there quite
yet, as the code generators depend on LibCore.
This commit introduces a WEB_SET_PROTOTYPE_FOR_INTERFACE macro that
caches the interface name in a local static FlyString. This means that
we only pay for FlyString-from-literal lookup once per browser lifetime
instead of every time the interface is instantiated.
We previously used an empty optional to denote that a ReferrerPolicy is
in the default empty string state. However, later additions added an
explicit EmptyString state. This patch moves all users to the explicit
state, and stops using `Optional<ReferrerPolicy>` everywhere except for
when an option not being passed from JavaScript has meaning.
Along with putting functions in the URL namespace into a DOMURL
namespace.
This is done as LibWeb is in an awkward situation where it needs
two URL classes. AK::URL is the general purpose URL class which
is all that is needed in 95% of cases. URL in the Web namespace
is needed predominantly for interfacing with the javascript
interfaces.
Because of two URLs in the same namespace, AK::URL has had to be
used throughout LibWeb. If we move AK::URL into a URL namespace,
this becomes more painful - where ::URL::URL is required to
specify the constructor (and something like
::URL::create_with_url_or_path in other places).
To fix this problem - rename the class in LibWeb implementing the
URL IDL interface to DOMURL, along with moving the other Web URL
related classes into this DOMURL folder.
One could argue that this name also makes the situation a little
more clear in LibWeb for why these two URL classes need be used
in the first place.
Just creating a stream on the JS heap isn't enough, as we will later
crash when trying to read from that stream as it hasn't been properly
initialized. Instead, until we have teeing implemented (which is a
rather huge part of the Streams spec), create streams using proper AOs
that do initialize the stream.
The resource:// scheme is used for Core::Resource files. Currently, any
users of resource:// URLs in Ladybird must manually create the Resource
and extract its data. This will allow for passing the resource:// URL
along for LibWeb to handle.
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
These wrappers will make it much easier to do various operations on the
different ArrayBuffer-related classes in LibWeb compared to the current
solution, which is to just accept a Handle<Object> everywhere (and use
"any" in the *.idl files).
Co-Authored-By: Matthew Olsson <mattco@serenityos.org>
With this change, we now have ~1200 CellAllocators across both LibJS and
LibWeb in a normal WebContent instance.
This gives us a minimum heap size of 4.7 MiB in the scenario where we
only have one cell allocated per type. Of course, in practice there will
be many more of each type, so the effective overhead is quite a bit
smaller than that in practice.
I left a few types unconverted to this mechanism because I got tired of
doing this. :^)
This is a hack on top of a hack because Workers don't *really* need to
have a Web::Page at all, but the ResourceLoader infra that should be
going away soon ™️ is not quite ready to axe that requirement for
cookies.
This patch updates the priority member of fetch requests to be
an enum. The implementation defined struct previously named Priority
has been renamed to InternalPriority in line with the spec.
If a function that captures a GC-allocated object is owned by another
GC-allocated object, it is more preferable to use JS::HeapFunction.
This is because JS::HeapFunction is visited, unlike introducing a new
heap root as JS::SafeFunction does.
We should not GC allocate in the constructors of GC-allocated objects
because a new allocation might trigger garbage collection, which in
turn might access not fully initialized objects.
NewAKString is effectively the default for any new IDL interface, so
let's mark this as the default behavior. It also makes it much easier to
figure out whatever interfaces are still left to port over to new AK
String.
In FetchAlgorithms, it is common for callbacks to capture realms. This
can indirectly keep objects alive that hold FetchController with these
callbacks. This creates a cyclic dependency. However, when
JS::HeapFunction is used, this is not a problem, as captured by
callbacks values do not create new roots.
Stop worrying about tiny OOMs. Work towards #20449.
While going through these, I also changed the function signature in many
places where returning ThrowCompletionOr<T> is no longer necessary.