It aligns better with the Filesystem Heirarchy Standard[1] to put our
program-specific helper programs that are not intended to be executed by
the user of the application in $prefix/libexec or in whatever the
packager sets as the CMake equivalent. Namely, on Debian systems this
should be /usr/lib/Ladybird or similar.
[1] https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.html#usrlibexec
We had previous implemented some plumbing for file input elements in
commit 636602a54e.
This implements the return path for chromes to inform WebContent of the
file(s) the user selected. This patch includes a dummy implementation
for headless-browser to enable testing.
This works very similarly to MarkedVector<T>, but instead of expecting
T to be Value or a GC-allocated pointer type, T can be anything.
Every pointer-sized value in the vector's storage will be checked during
conservative root scanning.
In other words, this allows you to put something like this in a
ConservativeVector<Foo> and it will be protected from GC:
struct Foo {
i64 number;
Value some_value;
GCPtr<Object> some_object;
};
The JIT compiler was an interesting experiment, but ultimately the
security & complexity cost of doing arbitrary code generation at runtime
is far too high.
In subsequent commits, the bytecode format will change drastically, and
instead of rewriting the JIT to fit the new bytecode, this patch simply
removes the JIT instead.
Other engines, JavaScriptCore in particular, have already proven that
it's possible to handle the vast majority of contemporary web content
with an interpreter. They are currently ~5x faster than us on benchmarks
when running without a JIT. We need to catch up to them before
considering performance techniques with a heavy security cost.
We currently bundle AK with LibCore on Lagom. This means that to use AK,
all libraries must also depend on LibCore. This will create circular
dependencies when we create LibURL, as LibURL will depend on LibUnicode,
which will depend on LibCore, which will depend on LibURL.
This splits the RIFFTypes header/TU into the WAV specific parts, which
move to WavTypes.h, as well as the general RIFF parts which move to the
new LibRIFF.
Sidenote for the spec comments: even though they are linked from a site
that explains the WAV format, the document is the (an) overall RIFF spec
from Microsoft. A better source may be used later; the changes to the
header are as minimal as possible.
Instead of spawning these processes from the WebContent process, we now
create them in the Browser chrome.
Part 1/N of "all processes are owned by the chrome".
We have two known PlatformObjects that need to implement some of the
behavior of LegacyPlatformObjects to date: Window, and HTMLFormElement.
To make this not require double (or virtual) inheritance of
PlatformObject, move the behavior of LegacyPlatformObject into
PlatformObject. The selection of LegacyPlatformObject behavior is done
with a new bitfield of feature flags instead of a dozen virtual
functions that return bool. This change simplifies every class involved
in the diff with the notable exception of Window, which now needs some
ugly const casts to implement named property access.
This large block of code is repeated nearly verbatim in LibWeb. Move it
to a helper function that both LibIPC and LibWeb can defer to. This will
let us make changes to this method in a singular location going forward.
Note this is a bit of a regression for the MessagePort. It now suffers
from the same performance issue that IPC messages face - we prepend the
meessage size to the message buffer. This degredation is very temporary
though, as a fix is imminent, and this change makes that fix easier.
With this, it's possible to build Ladybird without having Qt installed.
(Previously, the build required `moc` to exist.)
In fact, it's possible to build Ladybird without anything off `brew`
as long as you have `ninja` and `gn` (both of which don't have any
dependencies themselves and are easy to build).
Before this change, we would only cache and reuse Gfx::ScaledFont
instances for downloaded CSS fonts.
By moving it into Gfx::VectorFont, we get caching for all vector fonts,
including local system TTFs etc.
This avoids a *lot* of style invalidations in LibWeb, since we now vend
the same Gfx::Font pointer for the same font when used repeatedly.
This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
This adds APIs to allow Ispector clients to:
* Change a DOM text or comment node's text data.
* Add, replace, or remove a DOM element's attribute.
* Change a DOM element's tag.