Note that in some cases (in particular SQL::Result and PDFErrorOr),
there is no Formatter defined for the error type, hence TRY_OR_FAIL
cannot work as-is. Furthermore, this commit leaves untouched the places
where MUST could be replaced by TRY_OR_FAIL.
Inspired by:
https://github.com/SerenityOS/serenity/pull/18710#discussion_r1186892445
Previously, `Heap` would store serialized data in blocks of 1024 bytes
regardless of the actual length. Data longer than 1024 bytes was
silently truncated causing database corruption.
This changes the heap storage to prefix every block with two new fields:
the total data size in bytes, and the next block to retrieve if the data
is longer than what can be stored inside a single block. By chaining
blocks together, we can store arbitrary amounts of data without needing
to change anything of the logic in the rest of LibSQL.
As part of these changes, the "free list" is also removed from the heap
awaiting an actual implementation: it was never used.
Note that this bumps the database version from 3 to 4, and as such
invalidates (deletes) any database opened with LibSQL that is not
version 4.
Currently, integers are stored in LibSQL as 32-bit signed integers, even
if the provided type is unsigned. This resulted in a series of unchecked
unsigned-to-signed conversions, and prevented storing 64-bit values.
Further, mathematical operations were performed without similar checks,
and without checking for overflow.
This changes SQL::Value to behave like SQLite for INTEGER types. In
SQLite, the INTEGER type does not imply a size or signedness of the
underlying type. Instead, SQLite determines on-the-fly what type is
needed as values are created and updated.
To do so, the SQL::Value variant can now hold an i64 or u64 integer. If
a specific type is requested, invalid conversions are now explictly an
error (e.g. converting a stored -1 to a u64 will fail). When binary
mathematical operations are performed, we now try to coerce the RHS
value to a type that works with the LHS value, failing the operation if
that isn't possible. Any overflow or invalid operation (e.g. bitshifting
a 64-bit value by more than 64 bytes) is an error.
The handling of filesystem level errors was basically non-existing or
consisting of `VERIFY_NOT_REACHED` assertions. Addressed this by
* Adding `open` methods to `Heap` and `Database` which return errors.
* Changing the interface of methods of these classes and clients
downstream to propagate these errors.
The constructors of `Heap` and `Database` don't open the underlying
filesystem file anymore.
The SQL statement handlers return an `SQLErrorCode::InternalError`
error code if an error comes back from the lower levels. Note that some
of these errors are things like duplicate index entry errors that should
be caught before the SQL layer attempts to actually update the database.
Added tests to catch attempts to open weird or non-existent files as
databases.
Finally, in between me writing this patch and submitting the PR the
AK::Result<Foo, Bar> template got deprecated in favour of ErrorOr<Foo>.
This resulted in more busywork.
These are needed to distinguish columns from different tables with the
same column name in one and the same (joined) Tuple. Not quite happy
yet with this API; I think some sort of hierarchical structure would be
better but we'll burn that bridge when we get there :^)
Classes reading and writing to the data heap would communicate directly
with the Heap object, and transfer ByteBuffers back and forth with it.
This makes things like caching and locking hard. Therefore all data
persistence activity will be funneled through a Serializer object which
in turn submits it to the Heap.
Introducing this unfortunately resulted in a huge amount of churn, in
which a number of smaller refactorings got caught up as well.
The Order enum is used in the Meta component of LibSQL. Using this enum
meant having to include the monster AST/AST.h include file. Furthermore,
they are sort of basic and therefore can live in the general SQL
namespace. Moved to LibSQL/Type.h.
Also introduced a new class, SQLResult, which is needed in future
patches.
Unfortunately this patch is quite large.
The main functionality included are a BTree index implementation and
the Heap class which manages persistent storage.
Also included are a Key subclass of the Tuple class, which is a
specialization for index key tuples. This "dragged in" the Meta layer,
which has classes defining SQL objects like tables and indexes.