In case the write was to stderr/stdout, and it just so happened to fail
because of an issue like "the pty is gone", VERIFY() would end up
calling vout() back to write to stderr, which would then fail forever
until the stack is exhausted.
"Fixes" the issue where the Shell would crash in horrible ways when the
terminal is closed.
Previously StringBuilder would start allocating an external buffer
once the caller has used up more than half of the inline buffer's
capacity. Instead we should prefer to use the inline buffer until
it is full and only then start to allocate an external buffer.
Problem:
- `BitmapView` permits changing the underlying `Bitmap`. This violates
the idea of a "view" since views are simply overlays which can
themselves change but do not change the underlying data.
Solution:
- Migrate all non-`const` member functions to Bitmap.
Problem:
- Static variables take memory and can be subject to less optimization.
- This static variable is only used in 1 place.
Solution:
- Move the variable into the function and make it non-static.
This was removed as part of the ByteBuffer changes but the allocation
optimization is still necessary at least for non-SerenityOS targets
where malloc_good_size() isn't supported or returns a small value and
causes a whole bunch of unnecessary reallocations.
As the parser now flattens out the instructions and inserts synthetic
nesting/structured instructions where needed, we can treat the whole
thing as a simple parsed bytecode stream.
This currently knows how to execute the following instructions:
- unreachable
- nop
- local.get
- local.set
- {i,f}{32,64}.const
- block
- loop
- if/else
- branch / branch_if
- i32_add
- i32_and/or/xor
- i32_ne
This also extends the 'wasm' utility to optionally execute the first
function in the module with optionally user-supplied arguments.
Problem:
- `BitmapView` permits changing the underlying `Bitmap`. This violates
the idea of a "view" since views are simply overlays which can
themselves change but do not change the underlying data.
Solution:
- Migrate all non-`const` member functions to Bitmap.
The current code is factored such that reads to the entirety of the last
byte should be dropped. This was relying on the fact that last would be
one past the end in that case. Instead of actually reading that byte
when it's completely out of bounds of the bitmask, just skip reads that
would be invalid. Add more tests to make sure that the behavior is
correct for byte aligned reads of byte aligned bitmaps.
As we removed the support of VBE modesetting that was done by GRUB early
on boot, we need to determine if we can modeset the resolution with our
drivers, and if not, we should enable text mode and ensure that
SystemServer knows about it too.
Also, SystemServer should first check if there's a framebuffer device
node, which is an indication that text mode was not even if it was
requested. Then, if it doesn't find it, it should check what boot_mode
argument the user specified (in case it's self-test). This way if we
try to use bochs-display device (which is not VGA compatible) and
request a text mode, it will not honor the request and will continue
with graphical mode.
Also try to print critical messages with mininum memory allocations
possible.
In LibVT, We make the implementation flexible for kernel-specific
methods that are implemented in ConsoleImpl class.
Previously ByteBuffer would internally hold a RefPtr to the byte
buffer and would behave like a reference type, i.e. copying a
ByteBuffer would not create a duplicate byte buffer, but rather
two objects which refer to the same internal buffer.
This also changes ByteBuffer so that it has some internal capacity
much like the Vector<T> type. Unlike Vector<T> however a byte
buffer's data may be uninitialized.
With this commit ByteBuffer makes use of the kmalloc_good_size()
API to pick an optimal allocation size for its internal buffer.
This commit replaces the former, hand-written parser with a new one that
can be generated automatically according to a state change diagram.
The new `EscapeSequenceParser` class provides a more ergonomic interface
to dealing with escape sequences. This interface has been inspired by
Alacritty's [vte library](https://github.com/alacritty/vte/).
I tried to avoid changing the application logic inside the `Terminal`
class. While this code has not been thoroughly tested, I can't find
regressions in the basic command line utilities or `vttest`.
`Terminal` now displays nicer debug messages when it encounters an
unknown escape sequence. Defensive programming and bounds checks have
been added where we access parameters, and as a result, we can now
endure 4-5 seconds of `cat /dev/urandom`. :D
We generate EscapeSequenceStateMachine.h when building the in-kernel
LibVT, and we assume that the file is already in place when the userland
library is being built. This will probably cause problems later on, but
I can't find a way to do it nicely.
By constraining two implementations, the compiler will select the best
fitting one. All this will require is duplicating the implementation and
simplifying for the `void` case.
This constraining also informs both the caller and compiler by passing
the callback parameter types as part of the constraint
(e.g.: `IterationFunction<int>`).
Some `for_each` functions in LibELF only take functions which return
`void`. This is a minimal correctness check, as it removes one way for a
function to incompletely do something.
There seems to be a possible idiom where inside a lambda, a `return;` is
the same as `continue;` in a for-loop.
This implements the macOS API malloc_good_size() which returns the
true allocation size for a given requested allocation size. This
allows us to make use of all the available memory in a malloc chunk.
For example, for a malloc request of 35 bytes our malloc would
internally use a chunk of size 64, however the remaining 29 bytes
would be unused.
Knowing the true allocation size allows us to request more usable
memory that would otherwise be wasted and make that available for
Vector, HashTable and potentially other callers in the future.
If we're constructing a FlyString from a StringView, and we already
have a matching StringImpl in the table, use HashTable::find() to
locate the existing string without creating a temporary String.
Creating a ByteBuffer involves two allocations:
-One for the ByteBufferImpl object
-Another one for the actual byte buffer
This changes the ByteBuffer and ByteBufferImpl classes
so only one allocation is necessary.
This adds an `AK::ByteReader` to help with that so we don't duplicate
the logic all over the place.
No more `*(const u16*)` and `*(const u32*)` for anyone.
This should help a little with #7060.
We call placement new for the newly added slots. However, we should
also specify an initializer so primitive data types like u64 are
initialized appropriately.
Unfortunately adopt_ref requires a reference, which obviously does not
work well with when attempting to harden against allocation failure.
The adopt_ref_if_nonnull() variant will allow you to avoid using bare
pointers, while still allowing you to handle allocation failure.
Unfortunately adopt_own requires a reference, which obviously does not
work well with when attempting to harden against allocation failure.
The adopt_own_if_nonnull() variant will allow you to avoid using bare
pointers, while still allowing you to handle allocation failure.
This patch adds two new methods to LexicalPath. LexicalPath::append
appends a new path component to a LexicalPath, and LexicalPath::join
constructs a new LexicalPath from one or more components.
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
The get_dir_entries syscall failed if the serialized form of all the
directory entries together was too large to fit in its temporary buffer.
Now the kernel uses a fixed size buffer, that is flushed to an output
buffer when it is full. If this flushing operation fails because there
is not enough space available, the syscall will return -EINVAL. That
error code is then used in userspace as a signal to allocate a larger
buffer and retry the syscall.
This allows the construction of `Variant<int, int, int>`.
While this might not seem useful, it is very useful for making variants
that contain a series of member function pointers, which I plan to use
in LibGL for glGenLists() and co.
typeid() and RTTI was a nice clutch to implement this, but let's move
away from the horrible slowness and implement variants using type
indices for faster variants.
This commit introduces the ability to parse the document catalog dict,
as well as the page tree and individual pages. Pages obviously aren't
fully parsed, as we won't care about most of the fields until we
start actually rendering PDFs.
One of the primary benefits of the PDF format is laziness. PDFs are
not meant to be parsed all at once, and the same is true for pages.
When a Document is constructed, it builds a map of page number to
object index, but it does not fetch and parse any of the pages. A page
is only parsed when a caller requests that particular page (and is
cached going forwards).
Additionally, this commit also adds an object_cast function which
logs bad casts if DEBUG_PDF is set. Additionally, utility functions
were added to ArrayObject and DictObject to get all types of objects
from the collections to avoid having to manually cast.
This can currently parse a really simple module.
Note that it cannot parse the DataCount section, and it's still missing
almost all of the instructions.
This commit also adds a 'wasm' test utility that tries to parse a given
webassembly binary file.
It currently does nothing but exit when the parse fails, but it's a
start :^)