Commit Graph

14 Commits

Author SHA1 Message Date
Brian Gianforcaro
ed996fcced Kernel: Remove unused header includes 2021-08-01 08:10:16 +02:00
Daniel Bertalan
5f7f063919 Everywhere: Mark debug-only functions [[maybe_unused]]
These functions are only used from within `dbgln_if` calls, so in
certain build configurations, they go unused. Similarly to variables, we
now signal to the compiler that we understand that these are not always
in use.
2021-07-08 10:11:00 +02:00
Hendiadyoin1
62f9377656 Kernel: Move special sections into Sections.h
This also removes a lot of CPU.h includes infavor for Sections.h
2021-06-24 00:38:23 +02:00
Hendiadyoin1
7ca3d413f7 Kernel: Pull apart CPU.h
This does not add any functional changes
2021-06-24 00:38:23 +02:00
Andreas Kling
b91c49364d AK: Rename adopt() to adopt_ref()
This makes it more symmetrical with adopt_own() (which is used to
create a NonnullOwnPtr from the result of a naked new.)
2021-04-23 16:46:57 +02:00
Brian Gianforcaro
1682f0b760 Everything: Move to SPDX license identifiers in all files.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.

See: https://spdx.dev/resources/use/#identifiers

This was done with the `ambr` search and replace tool.

 ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
2021-04-22 11:22:27 +02:00
Hendiadyoin1
0d934fc991 Kernel::CPU: Move headers into common directory
Alot of code is shared between i386/i686/x86 and x86_64
and a lot probably will be used for compatability modes.
So we start by moving the headers into one Directory.
We will probalby be able to move some cpp files aswell.
2021-03-21 09:35:23 +01:00
Andreas Kling
73e06a1983 Kernel: Convert klog() => AK::Format in a handful of places 2021-03-12 15:22:35 +01:00
Andreas Kling
5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00
Andreas Kling
cc0f5917d3 Kernel: Slap a handful more things with UNMAP_AFTER_INIT 2021-02-20 00:00:19 +01:00
Andreas Kling
7c4ddecacb Kernel: Convert a bunch of String::format() => String::formatted() 2021-01-11 22:07:01 +01:00
Ben Wiederhake
64cc3f51d0 Meta+Kernel: Make clang-format-10 clean 2020-09-25 21:18:17 +02:00
Andreas Kling
21d5f4ada1 Kernel: Absorb LibBareMetal back into the kernel
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
2020-05-16 12:00:04 +02:00
Liav A
9db291d885 Kernel: Introduce the new Time management subsystem
This new subsystem includes better abstractions of how time will be
handled in the OS. We take advantage of the existing RTC timer to aid
in keeping time synchronized. This is standing in contrast to how we
handled time-keeping in the kernel, where the PIT was responsible for
that function in addition to update the scheduler about ticks.
With that new advantage, we can easily change the ticking dynamically
and still keep the time synchronized.

In the process context, we no longer use a fixed declaration of
TICKS_PER_SECOND, but we call the TimeManagement singleton class to
provide us the right value. This allows us to use dynamic ticking in
the future, a feature known as tickless kernel.

The scheduler no longer does by himself the calculation of real time
(Unix time), and just calls the TimeManagment singleton class to provide
the value.

Also, we can use 2 new boot arguments:
- the "time" boot argument accpets either the value "modern", or
  "legacy". If "modern" is specified, the time management subsystem will
  try to setup HPET. Otherwise, for "legacy" value, the time subsystem
  will revert to use the PIT & RTC, leaving HPET disabled.
  If this boot argument is not specified, the default pattern is to try
  to setup HPET.
- the "hpet" boot argumet accepts either the value "periodic" or
  "nonperiodic". If "periodic" is specified, the HPET will scan for
  periodic timers, and will assert if none are found. If only one is
  found, that timer will be assigned for the time-keeping task. If more
  than one is found, both time-keeping task & scheduler-ticking task
  will be assigned to periodic timers.
  If this boot argument is not specified, the default pattern is to try
  to scan for HPET periodic timers. This boot argument has no effect if
  HPET is disabled.

In hardware context, PIT & RealTimeClock classes are merely inheriting
from the HardwareTimer class, and they allow to use the old i8254 (PIT)
and RTC devices, managing them via IO ports. By default, the RTC will be
programmed to a frequency of 1024Hz. The PIT will be programmed to a
frequency close to 1000Hz.

About HPET, depending if we need to scan for periodic timers or not,
we try to set a frequency close to 1000Hz for the time-keeping timer
and scheduler-ticking timer. Also, if possible, we try to enable the
Legacy replacement feature of the HPET. This feature if exists,
instructs the chipset to disconnect both i8254 (PIT) and RTC.
This behavior is observable on QEMU, and was verified against the source
code:
ce967e2f33

The HPETComparator class is inheriting from HardwareTimer class, and is
responsible for an individual HPET comparator, which is essentially a
timer. Therefore, it needs to call the singleton HPET class to perform
HPET-related operations.

The new abstraction of Hardware timers brings an opportunity of more new
features in the foreseeable future. For example, we can change the
callback function of each hardware timer, thus it makes it possible to
swap missions between hardware timers, or to allow to use a hardware
timer for other temporary missions (e.g. calibrating the LAPIC timer,
measuring the CPU frequency, etc).
2020-03-19 15:48:00 +01:00