This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
This patch makes it possible for JS::Object::internal_set() to populate
a CacheablePropertyMetadata, and uses this to implement a basic
monomorphic cache for the most common form of property write access.
These functions all have a very common case that can be dealt with a
very simple inline check, often avoiding the need to call an out-of-line
function. This patch moves the common case to inline functions in a new
ValueInlines.h header (necessary due to header dependency issues..)
8% speed-up on the entire Kraken benchmark :^)
This function now takes an optional out parameter for callers who would
like to what kind of property we ended up getting.
This will be used to implement inline caching for property lookups.
Also, to prepare for adding more forms of caching, the out parameter
is a struct CacheablePropertyMetadata rather than just an offset. :^)
Some of these are allocated upon initialization of the intrinsics, and
some lazily, but in neither case the getters actually return a nullptr.
This saves us a whole bunch of pointer dereferences (as NonnullGCPtr has
an `operator T&()`), and also has the interesting side effect of forcing
us to explicitly use the FunctionObject& overload of call(), as passing
a NonnullGCPtr is ambigous - it could implicitly be turned into a Value
_or_ a FunctionObject& (so we have to dereference manually).
This class had slightly confusing semantics and the added weirdness
doesn't seem worth it just so we can say "." instead of "->" when
iterating over a vector of NNRPs.
This patch replaces NonnullRefPtrVector<T> with Vector<NNRP<T>>.
This includes an Error::create overload to create an Error from a UTF-8
StringView. If creating a String from that view fails, the factory will
return an OOM InternalError instead. VM::throw_completion can also make
use of this overload via its perfect forwarding.
Note that as of this commit, there aren't any such throwers, and the
call site in Heap::allocate will drop exceptions on the floor. This
commit only serves to change the declaration of the overrides, make sure
they return an empty value, and to propagate OOM errors frm their base
initialize invocations.
It turns out return a ThrowCompletionOr<T const&> is flawed, as the GCC
expansion trick used with TRY will always make a copy. PrimitiveString
is luckily the only such use case.
This makes construction of Utf16String fallible in OOM conditions. The
immediate impact is that PrimitiveString must then be fallible as well,
as it may either transcode UTF-8 to UTF-16, or create a UTF-16 string
from ropes.
There are a couple of places where it is very non-trivial to propagate
the error further. A FIXME has been added to those locations.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
This is needed so that the allocated NativeFunction receives the correct
realm, usually forwarded from the Object's initialize() function, rather
than using the current realm.
Global object initialization is tightly coupled to realm creation, so
simply pass it to the function instead of relying on the non-standard
'associated realm' concept, which I'd like to remove later.
This works essentially the same way as regular Object::initialize() now.
Additionally this allows us to forward the realm to GlobalObject's
add_constructor() / initialize_constructor() helpers, so they set the
correct realm on the allocated constructor function object.
This is a continuation of the previous six commits.
The global object is only needed to return it if the execution context
stack is empty, but that doesn't seem like a useful thing to allow in
the first place - if you're not currently executing JS, and the
execution context stack is empty, there is no this value to retrieve.
This is a continuation of the previous five commits.
A first big step into the direction of no longer having to pass a realm
(or currently, a global object) trough layers upon layers of AOs!
Unlike the create() APIs we can safely assume that this is only ever
called when a running execution context and therefore current realm
exists. If not, you can always manually allocate the Error and put it in
a Completion :^)
In the spec, throw exceptions implicitly use the current realm's
intrinsics as well: https://tc39.es/ecma262/#sec-throw-an-exception
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.
Using the fact that there are 2^52-2 NaN representations we can
"NaN-box" all the Values possible. This means that Value no longer has
an explicit "Type" but that information is now stored in the bits of a
double. This is done by "tagging" the top two bytes of the double.
For a full explanation see the large comment with asserts at the top of
Value.
We can also use the exact representation of the tags to make checking
properties like nullish, or is_cell quicker. But the largest gains are
in the fact that the size of a Value is now halved.
The SunSpider and other benchmarks have been ran to confirm that there
are no regressions in performance compared to the previous
implementation. The tests never performed worse and in some cases
performed better. But the biggest differences can be seen in memory
usage when large arrays are allocated. A simple test which allocates a
1000 arrays of size 100000 has roughly half the memory usage.
There is also space in the representations for future expansions such as
tuples and records.
To ensure that Values on the stack and registers are not lost during
garbage collection we also have to add a check to the Heap to check for
any of the cell tags and extracting the canonical form of the pointer
if it matches.
This also refactors interpreter creation to follow
InitializeHostDefinedRealm, but I couldn't fit it in the title :^)
This allows us to follow the spec much more closely rather than being
completely ad-hoc with just the parse node instead of having all the
surrounding data such as the realm of the parse node.
The interpreter creation refactor creates the global execution context
once and doesn't take it off the stack. This allows LibWeb to take the
global execution context and manually handle it, following the HTML
spec. The HTML spec calls this the "realm execution context" of the
environment settings object.
It also allows us to specify the globalThis type, as it can be
different from the global object type. For example, on the web, Window
global objects use a WindowProxy global this value to enforce the same
origin policy on operations like [[GetOwnProperty]].
Finally, it allows us to directly call Program::execute in perform_eval
and perform_shadow_realm_eval as this moves
global_declaration_instantiation into Interpreter::run
(ScriptEvaluation) as per the spec.
Note that this doesn't evalulate Source Text Modules yet or refactor
the bytecode interpreter, that's work for future us :^)
This patch was originally build by Luke for the environment settings
object change but was also needed for modules. So I (davidot) have
modified it with the new completion changes and setup for that.
Co-authored-by: davidot <davidot@serenityos.org>
Now we give each sheet its own interpreter and realm, and only make them
share the VM.
This is to prepare for the next commit, which will be refactoring a
bunch of things to propagate exceptions via ThrowCompletionOr<T>.
The old versions were renamed to JS_DECLARE_OLD_NATIVE_FUNCTION and
JS_DEFINE_OLD_NATIVE_FUNCTION, and will be eventually removed once all
native functions were converted to the new format.
Before this commit it only allocated the global object so when it wanted
to lookup 'thisSheet' it could not find it in the global environment.
We now hotswap the global object everytime a cell evaluated.
This also fixes that SheetGlobalObject did not have an
internal_has_property meaning 'A0' could not be referenced unless it was
via a member lookup (this.A0). This was already broken before the
bindings refactoring.
The correct behavior of realms in spreadsheet is not completely clear
since what is shared between sheets is not very well defined.
The reason that just setting the SheetGlobalObject as the
global_this_value is not enough is because ECMAScript does not check the
global_this_value for members when resolving a reference in the global
environment.