We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This patch adds a way to ask the allocator to skip its internal
scrubbing memset operation. Before this change, kcalloc() would scrub
twice: once internally in kmalloc() and then again in kcalloc().
The same mechanism already existed in LibC malloc, and this patch
brings it over to the kernel heap allocator as well.
This solves one FIXME in kcalloc(). :^)
This solves one of the security issues being mentioned in issue #15996.
We simply don't allow creating hardlinks on paths that were not unveiled
as writable to prevent possible bypass on a certain path that was
unveiled as non-writable.
Instead, allow userspace to decide on the coredump directory path. By
default, SystemServer sets it to the /tmp/coredump directory, but users
can now change this by writing a new path to the sysfs node at
/sys/kernel/variables/coredump_directory, and also to read this node to
check where coredumps are currently generated at.
By default, disallow reading of values in that directory. Later on, we
will enable sparingly read access to specific files.
The idea that led to this mechanism was suggested by Jean-Baptiste
Boric (also known as boricj in GitHub), to prevent access to sensitive
information in the SysFS if someone adds a new file in the /sys/kernel
directory.
There's simply no benefit in allowing sandboxed programs to change the
power state of the machine, so disallow writes to the mentioned node to
prevent malicious programs to request that.
Previously we tried to determine if `fd` refers to a non-regular file by
doing a stat() operation on the file.
This didn't work out very well since many File subclasses don't
actually implement stat() but instead fall back to failing with EBADF.
This patch fixes the issue by checking for regular files with
File::is_regular_file() instead.
We used size_t, which is a type that is guarenteed to be large
enough to hold an array index, but uintptr_t is designed to be used
to hold pointer values, which is the case of stack guards.
To accomplish this, we add another VeilState which is called
LockedInherited. The idea is to apply exec unveil data, similar to
execpromises of the pledge syscall, on the current exec'ed program
during the execve sequence. When applying the forced unveil data, the
veil state is set to be locked but the special state of LockedInherited
ensures that if the new program tries to unveil paths, the request will
silently be ignored, so the program will continue running without
receiving an error, but is still can only use the paths that were
unveiled before the exec syscall. This in turn, allows us to use the
unveil syscall with a special utility to sandbox other userland programs
in terms of what is visible to them on the filesystem, and is usable on
both programs that use or don't use the unveil syscall in their code.
Because the ".." entry in a directory is a separate inode, if a
directory is renamed to a new location, then we should update this entry
the point to the new parent directory as well.
Co-authored-by: Liav A <liavalb@gmail.com>
Each GenericInterruptHandler now tracks the number of calls that each
CPU has serviced.
This takes care of a FIXME in the /sys/kernel/interrupts generator.
Also, the lsirq command line tool now displays per-CPU call counts.
This patch fixes some include problems on aarch64. aarch64 is still
currently broken but this will get us back to the underlying problem
of FloatExtractor.
We now disallow jail creation from a process within a jail because there
is simply no valid use case to allow it, and we will probably not enable
this behavior (which is considered a bug) again.
Although there was no "real" security issue with this bug, as a process
would still be denied to join that jail, there's an information reveal
about the amount of jails that are or were present in the system.
Add support for async transfers by using a separate kernel task to poll
a list of active async transfers on a set time interval, and invoke
their user-provided callback function when they are complete. Also add
support for the interrupt class of transfers, building off of this async
functionality.
Our implementation for Jails resembles much of how FreeBSD jails are
working - it's essentially only a matter of using a RefPtr in the
Process class to a Jail object. Then, when we iterate over all processes
in various cases, we could ensure if either the current process is in
jail and therefore should be restricted what is visible in terms of
PID isolation, and also to be able to expose metadata about Jails in
/sys/kernel/jails node (which does not reveal anything to a process
which is in jail).
A lifetime model for the Jail object is currently plain simple - there's
simpy no way to manually delete a Jail object once it was created. Such
feature should be carefully designed to allow safe destruction of a Jail
without the possibility of releasing a process which is in Jail from the
actual jail. Each process which is attached into a Jail cannot leave it
until the end of a Process (i.e. when finalizing a Process). All jails
are kept being referenced in the JailManagement. When a last attached
process is finalized, the Jail is automatically destroyed.
This adds try_* methods to AK::SinglyLinkedList and
AK::SinglyLinkedListWithCount and updates the network stack to use
those to gracefully handle allocation failures.
Refs #6369.
This decreases the number of bytes necessary to capture the variables
for this lambda. The next step will be to remove dynamic allocations
from AK::Function which depends on this change to keep the size of
AK::Function objects reasonable.
This is intended to reflect the POSIX sched_setparam API, which has some
cryptic language
(https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_08_04_01
) that as far as I can tell implies we should prioritize process
scheduling policies over thread scheduling policies. Technically this
means that a process must have its own sets of policies that are
considered first by the scheduler, but it seems unlikely anyone relies
on this behavior in practice. So we just override all thread's policies,
making them (at least before calls to pthread_setschedparam) behave
exactly like specified on the surface.
The priority range was changed several years ago, but the
userland-reported limits were just forgotten :skeleyak:. Move the thread
priority constants into an API header so that userland can use it
properly.