Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
This makes the Scheduler a lot leaner by not having to evaluate
block conditions every time it is invoked. Instead evaluate them as
the states change, and unblock threads at that point.
This also implements some more waitid/waitpid/wait features and
behavior. For example, WUNTRACED and WNOWAIT are now supported. And
wait will now not return EINTR when SIGCHLD is delivered at the
same time.
This makes most operations thread safe, especially so that they
can safely be used in the Kernel. This includes obtaining a strong
reference from a weak reference, which now requires an explicit
call to WeakPtr::strong_ref(). Another major change is that
Weakable::make_weak_ref() may require the explicit target type.
Previously we used reinterpret_cast in WeakPtr, assuming that it
can be properly converted. But WeakPtr does not necessarily have
the knowledge to be able to do this. Instead, we now ask the class
itself to deliver a WeakPtr to the type that we want.
Also, WeakLink is no longer specific to a target type. The reason
for this is that we want to be able to safely convert e.g. WeakPtr<T>
to WeakPtr<U>, and before this we just reinterpret_cast the internal
WeakLink<T> to WeakLink<U>, which is a bold assumption that it would
actually produce the correct code. Instead, WeakLink now operates
on just a raw pointer and we only make those constructors/operators
available if we can verify that it can be safely cast.
In order to guarantee thread safety, we now use the least significant
bit in the pointer for locking purposes. This also means that only
properly aligned pointers can be used.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
This does not add any behaviour change to the processes, but it ties a
TTY to an active process group via TIOCSPGRP, and returns the TTY to the
kernel when all processes in the process group die.
Also makes the TTY keep a link to the original controlling process' parent (for
SIGCHLD) instead of the process itself.
This compiles, and fixes two bugs:
- setpgid() confusion (see previous commit)
- tcsetpgrp() now allows to set a non-empty process group even if
the group leader has already died. This makes Serenity slightly
more POSIX-compatible.
A process that is not in the foreground process group of a TTY should
not be allowed to read/write that TTY. Instead, we now send either a
SIGTTIN (on read) or SIGTTOU (on write) signal to the process, and fail
the I/O syscall with EINTR.
Fixes#205.
- Remove goofy _r suffix from syscall names.
- Don't take a signed buffer size.
- Use Userspace<T>.
- Make TTY::tty_name() return a String instead of a StringView.
By making the Process class RefCounted we don't really need
ProcessInspectionHandle anymore. This also fixes some race
conditions where a Process may be deleted while still being
used by ProcFS.
Also make sure to acquire the Process' lock when accessing
regions.
Last but not least, there's no reason why a thread can't be
scheduled while being inspected, though in practice it won't
happen anyway because the scheduler lock is held at the same
time.
Use copy_{to,from}_user() in the various File::ioctl() implementations
instead of disabling SMAP wholesale in sys$ioctl().
This patch does not port IPv4Socket::ioctl() to those API's since that
will be more involved. That function now creates a local SmapDisabler.
It is possible to switch to VirtualConsoles 1 to 4 via the shortcut
ALT + [1-4]. Therefor the array of VirtualConsoles should be guaranteed
to be initialized.
Also add an constant for the maximum number of VirtualConsoles to
guarantee consistency.
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
You can now request an update of the terminal's window progress by
sending this escape sequence:
<esc>]9;<value>;<max_value>;<escape><backslash>
I'm sure we can find many interesting uses for this! :^)
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
It was possible to send signals to processes that you were normally not
allowed to send signals to, by calling ioctl(tty, TIOCSPGRP, targetpid)
and then generating one of the TTY-related signals on the calling
process's TTY (e.g by pressing ^C, ^Z, etc.)
Background: DoubleBuffer is a handy buffer class in the kernel that
allows you to keep writing to it from the "outside" while the "inside"
reads from it. It's used for things like LocalSocket and TTY's.
Internally, it has a read buffer and a write buffer, but the two will
swap places when the read buffer is exhausted (by reading from it.)
Before this patch, it was internally implemented as two Vector<u8>
that we would swap between when the reader side had exhausted the data
in the read buffer. Now instead we preallocate a large KBuffer (64KB*2)
on DoubleBuffer construction and use that throughout its lifetime.
This removes all the kmalloc heap traffic caused by DoubleBuffers :^)
Previously, VFS::open() would only use the passed flags for permission checking
purposes, and Process::sys$open() would set them on the created FileDescription
explicitly. Now, they should be set by VFS::open() on any files being opened,
including files that the kernel opens internally.
This also lets us get rid of the explicit check for whether or not the returned
FileDescription was a preopen fd, and in fact, fixes a bug where a read-only
preopen fd without any other flags would be considered freshly opened (due to
O_RDONLY being indistinguishable from 0) and granted a new set of flags.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
The kernel and its static data structures are no longer identity-mapped
in the bottom 8MB of the address space, but instead move above 3GB.
The first 8MB above 3GB are pseudo-identity-mapped to the bottom 8MB of
the physical address space. But things don't have to stay this way!
Thanks to Jesse who made an earlier attempt at this, it was really easy
to get device drivers working once the page tables were in place! :^)
Fixes#734.
This has been a FIXME for a long time. We now apply the provided
read/write permissions to the constructed FileDescription when opening
a File object via File::open().
Okay, one "dunce hat" point for me. The new PTY majors conflicted with
PATAChannel. Now they are 200 for master and 201 for slave, not used
by anything else.. I hope!
The 1st master pseudoterminal had the same device ID as /dev/psaux
which was caught by an assertion in Device VFS registration.
This would cause us to overwrite the PS/2 mouse device registration
which was definitely not good.
Turns out we can use abi::__cxa_demangle() for this, and all we need to
provide is sprintf(), realloc() and free(), so this patch exposes them.
We now have fully demangled C++ backtraces :^)
The kernel is now no longer identity mapped to the bottom 8MiB of
memory, and is now mapped at the higher address of `0xc0000000`.
The lower ~1MiB of memory (from GRUB's mmap), however is still
identity mapped to provide an easy way for the kernel to get
physical pages for things such as DMA etc. These could later be
mapped to the higher address too, as I'm not too sure how to
go about doing this elegantly without a lot of address subtractions.
Oops, we had a little mistake here. We were flushing whenever !NOFLSH,
not just when generating a signal.
This broke arrow keys in the terminal (you would only get A/B/C/D when
pressing arrow keys, instead of the full escape sequence.)
This makes tcgetpgrp() on a master PTY return the PGID of the slave PTY
which is probably what you are looking for. I'm not sure how correct or
standardized this is, but it makes sense to me right now.
The TTY driver now respects the ICANON flag, enabling basic line
editing like VKILL, VERASE, VEOF and VWERASE. Additionally,
ICANON is now set by default.
Basic echoing has can now be enabled via the ECHO flag, though
more complicated echoing like ECHOCTL or ECHONL has not been
implemented.
This reverts commit 1cca5142af.
This appears to be causing intermittent triple-faults and I don't know
why yet, so I'll just revert it to keep the tree in decent shape.
Background: DoubleBuffer is a handy buffer class in the kernel that
allows you to keep writing to it from the "outside" while the "inside"
reads from it. It's used for things like LocalSocket and PTY's.
Internally, it has a read buffer and a write buffer, but the two will
swap places when the read buffer is exhausted (by reading from it.)
Before this patch, it was internally implemented as two Vector<u8>
that we would swap between when the reader side had exhausted the data
in the read buffer. Now instead we preallocate a large KBuffer (64KB*2)
on DoubleBuffer construction and use that throughout its lifetime.
This removes all the kmalloc heap traffic caused by DoubleBuffers :^)
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
This papers over an immediate issue where pseudoterminals would choke
on more than 16 characters of pasted input in the GUI terminal.
Longer-term we should find a more elegant solution than using a static
size CircularQueue for this.
TTY::emit is called from an IRQ handler, and is used to push input data
into a buffer for later retrieval. Previously this was using DoubleBuffer,
but that class wants to take a lock. Our lock code wants to make sure
interrupts are enabled, but they're disabled while an IRQ handler is
running. This made the kernel sad, but this CircularQueue cheers it up by
avoiding the lock requirement completely.