Use copy_{to,from}_user() in the various File::ioctl() implementations
instead of disabling SMAP wholesale in sys$ioctl().
This patch does not port IPv4Socket::ioctl() to those API's since that
will be more involved. That function now creates a local SmapDisabler.
Add all 6 shortcuts even if the switch between VirtualConsoles is
currently not available in the graphical console.
Also make the case statement more compact.
The Lock class still permits no reason, but for everything else
require a reason to be passed to Thread::wait_on. This makes it
easier to diagnose why a Thread is in Queued state.
Random now gets entropy from the following drivers:
- KeyboardDevice
- PATAChannel
- PS2MouseDevice
- E1000NetworkAdapter
- RTL8139NetworkAdapter
Of these devices, PS2MouseDevice and PATAChannel provide the vast
majority of the entropy.
We were not setting the DMA transfer mode correctly. I have absolutely
no clue how this could ever have worked, but it did work for months
until it suddenly didn't.
Anyways, this fixes that. The sound is still a little bit glitchy and
that could probably be fixed by using the SB16's auto-initialized mode.
.. and make travis run it.
I renamed check-license-headers.sh to check-style.sh and expanded it so
that it now also checks for the presence of "#pragma once" in .h files.
It also checks the presence of a (single) blank line above and below the
"#pragma once" line.
I also added "#pragma once" to all the files that need it: even the ones
we are not check.
I also added/removed blank lines in order to make the script not fail.
I also ran clang-format on the files I modified.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
The detection works very similarly to how we detect a mouse wheel, just
another magical sequence of "set sample rate" requests to the mouse
followed by an ID check.
Since a Region is basically a view into a potentially larger VMObject,
it was always necessary to include the Region starting offset when
accessing its underlying physical pages.
Until now, you had to do that manually, but this patch adds a simple
Region::physical_page() for read-only access and a physical_page_slot()
when you want a mutable reference to the RefPtr<PhysicalPage> itself.
A lot of code is simplified by making use of this.
The IOAPIC manual states that "Interrupt Mask-R/W. When this bit is 1,
the interrupt signal is masked. Edge-sensitive interrupts signaled on
a masked interrupt pin are ignored." - Therefore we have to ensure that
we disable interrupts globally with cli(), but also to ensure that we
invoke enable_irq() before sending the hardware command that generates
an IRQ almost immediately.
First, before this change, specifying 'force_pio' in the kernel
commandline was meaningless because we nevertheless set the DMA flag to
be enabled.
Also, we had a problem in which we used IO::repeated_out16() in PIO
write method. This might work on buggy emulators, but I suspect that on
real hardware this code will fail.
The most difficult problem was to restore the PIO read operation.
Apparently, it seems that we can't use IO::repeated_in16() here because
it will read zeroed data. Currently we rely on a simple loop that
invokes IO::in16() to a buffer. Also, the interrupt handling stage in
the PIO read method is moved to be handled inside the loop of reading
the requested sectors.
- If there is no VMWare backdoor, don't allocate memory for it.
- Remove the "unsupported" state, instead just don't instantiate.
- Move the command-line parsing from init to the driver.
- Move mouse packet reception from PS2MouseDevice to VMWareBackdoor.
This new subsystem includes better abstractions of how time will be
handled in the OS. We take advantage of the existing RTC timer to aid
in keeping time synchronized. This is standing in contrast to how we
handled time-keeping in the kernel, where the PIT was responsible for
that function in addition to update the scheduler about ticks.
With that new advantage, we can easily change the ticking dynamically
and still keep the time synchronized.
In the process context, we no longer use a fixed declaration of
TICKS_PER_SECOND, but we call the TimeManagement singleton class to
provide us the right value. This allows us to use dynamic ticking in
the future, a feature known as tickless kernel.
The scheduler no longer does by himself the calculation of real time
(Unix time), and just calls the TimeManagment singleton class to provide
the value.
Also, we can use 2 new boot arguments:
- the "time" boot argument accpets either the value "modern", or
"legacy". If "modern" is specified, the time management subsystem will
try to setup HPET. Otherwise, for "legacy" value, the time subsystem
will revert to use the PIT & RTC, leaving HPET disabled.
If this boot argument is not specified, the default pattern is to try
to setup HPET.
- the "hpet" boot argumet accepts either the value "periodic" or
"nonperiodic". If "periodic" is specified, the HPET will scan for
periodic timers, and will assert if none are found. If only one is
found, that timer will be assigned for the time-keeping task. If more
than one is found, both time-keeping task & scheduler-ticking task
will be assigned to periodic timers.
If this boot argument is not specified, the default pattern is to try
to scan for HPET periodic timers. This boot argument has no effect if
HPET is disabled.
In hardware context, PIT & RealTimeClock classes are merely inheriting
from the HardwareTimer class, and they allow to use the old i8254 (PIT)
and RTC devices, managing them via IO ports. By default, the RTC will be
programmed to a frequency of 1024Hz. The PIT will be programmed to a
frequency close to 1000Hz.
About HPET, depending if we need to scan for periodic timers or not,
we try to set a frequency close to 1000Hz for the time-keeping timer
and scheduler-ticking timer. Also, if possible, we try to enable the
Legacy replacement feature of the HPET. This feature if exists,
instructs the chipset to disconnect both i8254 (PIT) and RTC.
This behavior is observable on QEMU, and was verified against the source
code:
ce967e2f33
The HPETComparator class is inheriting from HardwareTimer class, and is
responsible for an individual HPET comparator, which is essentially a
timer. Therefore, it needs to call the singleton HPET class to perform
HPET-related operations.
The new abstraction of Hardware timers brings an opportunity of more new
features in the foreseeable future. For example, we can change the
callback function of each hardware timer, thus it makes it possible to
swap missions between hardware timers, or to allow to use a hardware
timer for other temporary missions (e.g. calibrating the LAPIC timer,
measuring the CPU frequency, etc).