Color themes are loaded from .ini files in /res/themes/
The theme can be switched from the "Themes" section in the system menu.
The basic mechanism is that WindowServer broadcasts a SharedBuffer with
all of the color values of the current theme. Clients receive this with
the response to their initial WindowServer::Greet handshake.
When the theme is changed, WindowServer tells everyone by sending out
an UpdateSystemTheme message with a new SharedBuffer to use.
This does feel somewhat bloated somehow, but I'm sure we can iterate on
it over time and improve things.
To get one of the theme colors, use the Color(SystemColor) constructor:
painter.fill_rect(rect, SystemColor::HoverHighlight);
Some things don't work 100% right without a reboot. Specifically, when
constructing a GWidget, it will set its own background and foreground
colors based on the current SystemColor::Window and SystemColor::Text.
The widget is then stuck with these values, and they don't update on
system theme change, only on app restart.
All in all though, this is pretty cool. Merry Christmas! :^)
We were casting the pthread_mutex_t* instead of pthread_mutex_t::lock
to an Atomic<u32>. This still worked fine, since "lock" is the first
member of pthread_mutex_t.
This is a bit sad, but, with the Allocators as static globals their
destructors were running before some user code. Which doesn't really
make much sense, as none of the members of (at least the basic one) do
any real heavy lifting or have many resources to RAII.
To avoid the problem, just mmap the memory for the global arrays of
Allocators in __malloc_init and let the Kernel collect the memory when
we're done with the process.
These guys are all declared as globals, and their ASSERT_NOT_REACHED
in the destructor doesn't play nice with __cxa_atexit. As in, every
application will assert in __cxa_finalize if this assert isn't removed.
Implement __cxa_atexit and __cxa_finalize per the Itanium spec,
and convert stdlib's atexit and exit() to to call them instead of
a custom 'C-only' atexit implementation.
We always want to put crt0.o in the location where it can get picked
up by the i686-pc-serenity toolchain.
This feels a bit hackish but should get the build working again. :^)
Use simple stack cookies to try to provoke an assertion failure on
stack overflow.
This is far from perfect, since we use a constant cookie instead of
generating a random one on startup, but it can still help us catch
bugs, which is the primary concern right now. :^)
Allow everything to be built from the top level directory with just
'make', cleaned with 'make clean', and installed with 'make
install'. Also support these in any particular subdirectory.
Specifying 'make VERBOSE=1' will print each ld/g++/etc. command as
it runs.
Kernel and early host tools (IPCCompiler, etc.) are built as
object.host.o so that they don't conflict with other things built
with the cross-compiler.
These fields are intended to carry the real meat of a drag operation,
and the "text" is just for what we show on screen (alongside the cursor
during the actual drag.)
The data field is just a String for now, but in the future we should
make it something more flexible.
Now that Frame knows the visible viewport rect, it can easily ignore
repaint requests from e.g <blink> elements that are not currently
scrolled into view. :^)
When the visible viewport rect changes, we walk the layout tree and
check where each LayoutImage is in relation to the viewport rect.
Images outside have their bitmaps marked as volatile.
Note that the bitmaps are managed by ImageDecoder objects. If a bitmap
is purged by the kernel while volatile, we construct a new ImageDecoder
next time we need pixels for the image.
A client that only ever does synchronous IPC calls from its side would
never actually process incoming asynchronous messages since they would
arrive while waiting for a synchronous response and then end up sitting
forever in the "unhandled messages" queue.
We now always handle unhandled messages using a deferred invocation.
This fixes the bug where Audio.MenuApplet didn't learn that the muted
state changed in response to its own request to change it. :^)
Instead of implementing menu applets as their own thing, they are now
WSWindows of WSWindowType::MenuApplet.
This makes it much easier to work with them on the client side, since
you can just create a GWindow with the right type and you're in the
menubar doing applet stuff :^)
This patch adds a single "kernel info page" that is mappable read-only
by any process and contains the current time of day.
This is then used to implement a version of gettimeofday() that doesn't
have to make a syscall.
To protect against race condition issues, the info page also has a
serial number which is incremented whenever the kernel updates the
contents of the page. Make sure to verify that the serial number is the
same before and after reading the information you want from the page.
Currently only Ext2FS and TmpFS supports InodeWatchers. We now fail
with ENOTSUPP if watch_file() is called on e.g ProcFS.
This fixes an issue with FileManager chewing up all the CPU when /proc
was opened. Watchers don't keep the watched Inode open, and when they
close, the watcher FD will EOF.
Since nothing else kept /proc open in FileManager, the watchers created
for it would EOF immediately, causing a refresh over and over.
Fixes#879.
This logic is all taken care of by GAbstractColumnView now, so we can
simply delete GTreeView::context_menu_event(). :^)
Fixes an issue mentioned in #826
4KB gets pretty mmap/munmap heavy when downloading larger files,
so bump this a bit to reduce time spent in memory allocation.
This can be improved in various ways, but I'm not sure what the
best way forward is at the moment.
This makes GTreeView able to support multi-column models!
Only one column can be the "tree column", this is column 0 by default
but can be changed by overriding GModel::tree_column().