Our implementation for Jails resembles much of how FreeBSD jails are
working - it's essentially only a matter of using a RefPtr in the
Process class to a Jail object. Then, when we iterate over all processes
in various cases, we could ensure if either the current process is in
jail and therefore should be restricted what is visible in terms of
PID isolation, and also to be able to expose metadata about Jails in
/sys/kernel/jails node (which does not reveal anything to a process
which is in jail).
A lifetime model for the Jail object is currently plain simple - there's
simpy no way to manually delete a Jail object once it was created. Such
feature should be carefully designed to allow safe destruction of a Jail
without the possibility of releasing a process which is in Jail from the
actual jail. Each process which is attached into a Jail cannot leave it
until the end of a Process (i.e. when finalizing a Process). All jails
are kept being referenced in the JailManagement. When a last attached
process is finalized, the Jail is automatically destroyed.
Let's put the power_state global node into the /sys/kernel directory,
because that directory represents all global nodes and variables being
related to the Kernel. It's also a mutable node, that is more acceptable
being in the mentioned directory due to the fact that all other files in
the /sys/firmware directory are just firmware blobs and are not mutable
at all.
The ProcFS is an utter mess currently, so let's start move things that
are not related to processes-info. To ensure it's done in a sane manner,
we start by duplicating all /proc/ global nodes to the /sys/kernel/
directory, then we will move Userland to use the new directory so the
old directory nodes can be removed from the /proc directory.
We move QEMU and VirtualBox shutdown sequences to a separate file, as
well as moving the i8042 reboot code sequence too to another file.
This allows us to abstract specific methods from the power state node
code of the SysFS filesystem, to allow other architectures to put their
methods there too in the future.
Instead of having three separate APIs (one for each timestamp),
there's now only Inode::update_timestamps() and it takes 3x optional
timestamps. The non-empty timestamps are updated while holding the inode
mutex, and the outside world no longer has to look at intermediate
timestamp states.
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
Instead of having two separate implementations of AK::RefCounted, one
for userspace and one for kernelspace, there is now RefCounted and
AtomicRefCounted.
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
This enum was created to help put distinction between the commandset and
the interface type, as ATAPI devices are simply ATA devices utilizing
the SCSI commandset. Because we don't support ATAPI, putting such type
of distinction is pointless, so let's remove this for now.
We should actually start counting from the parent directory and not from
the symbolic link as it will represent a wrong count of hops from the
actual mountpoint.
The symlinks in /sys/dev/block and /sys/dev/char worked only by luck,
because I have set it to the wrong parent directory which is the
/sys/dev directory, so with the symlink it was 3 hops to /sys, together
with the root directory, therefore, everything seemed to work.
Now that the device symlinks in /sys/dev/block and /sys/dev/char are set
to the right parent directory and we start measure hops from root
directory with the parent directory of a symlink, everything seem to
work correctly now.
It is starting to get a little messy with how each device can try to add
or remove itself to either /sys/dev/block or /sys/dev/char directories.
To better do this, we introduce 4 virtual methods to take care of that,
so until we ensure all nodes in /sys/dev/block and /sys/dev/char are
actual symlinks, we allow the Device base class to call virtual methods
upon insertion or before being destroying, so it add itself elegantly to
either of these directories or remove itself when needed.
For special cases where we need to create symlinks, we have two virtual
methods to be called otherwise to do almost the same thing mentioned
before, but to use symlinks instead.
Under normal conditions (when mounting SysFS in /sys), there will be a
new directory in the /sys/devices directory called "graphics".
For now, under that directory there will be only a sub-directory called
"connectors" which will contain all DisplayConnectors' details, each in
its own sub-directory too, distinguished in naming with its minor
number.
Therefore, /sys/devices/graphics/connectors/MINOR_NUMBER/ will contain:
- General device attributes such as mutable_mode_setting_capable,
double_buffering_capable, flush_support, partial_flush_support and
refresh_rate_support. These values are exposed in the ioctl interface
of the DisplayConnector class too, but these can be useful later on
for command line utilities that want/need to expose these basic
settings.
- The EDID blob, simply named "edid". This will help userspace to fetch
the edid without the need of using the ioctl interface later on.
This change in fact does the following:
1. Use support for symlinks between /sys/dev/block/ storage device
identifier nodes and devices in /sys/devices/storage/{LUN}.
2. Add basic nodes in a /sys/devices/storage/{LUN} directory, to let
userspace to know about the device and its details.
This enforces us to remove duplicated code across the SysFS code. This
results in great simplification of how the SysFS works now, because we
enforce one way to treat SysFSDirectory objects.
This will be used later on to help connecting a node at /sys/dev/block/
that represents a Storage device to a directory in /sys/devices/storage/
with details on that device in that directory.
These methods will be used later on to introduce symbolic links support
in the SysFS, so the kernel will be able to resolve relative paths of
components in filesystem based on using the m_parent_directory pointer
in each SysFSComponent object.
This folder in the SysFS code represents everything related to /sys/dev,
which is a directory meant to be a convenient interface to track all IDs
of all block and character devices (ID = major:minor numbers).
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
In a previous commit I moved everything into the new subdirectories in
FileSystem/SysFS directory without trying to actually make changes in
the code itself too much. Now it's time to split the code to make it
more readable and understandable, hence this change occurs now.