I originally defined the bytes() method for the String class, because it
made it obvious that it's a span of bytes instead of span of characters.
This commit makes this more consistent by defining a bytes() method when
the type of the span is known to be u8.
Additionaly, the cast operator to Bytes is overloaded for ByteBuffer and
such.
This change aims to add support for obscure IPv4 address notations, such as 1.1 (which should be equal to 1.0.0.1), or the hypothetical address 1 (which is equal to 0.0.0.1). This is supported on other platforms as well, such as Linux, Windows, *BSD, and even Haiku.
This enables a nice warning in case a function becomes dead code. Also, add forgotten
header to Base64.cpp, which would cause an issue later when we enable -Wmissing-declarations.
This template class allows for easy generation of incompatible numeric types.
This is useful whenever code has to handle heterogenous data (like meters and
seconds) but the underlying data types are compatible (like int and int).
The motivation comes from the Kernel's inconsistent use of pid_t for process and
thread IDs even though the ID spaces are incompatible, and translating forth/back
is nontrivial.
Other uses could be units (as described above), or incompatible index systems.
A popular use in real life is image manipulation, when there are multiple
coordinate systems.
The symbol name insertion scheme is different from objdump -d's.
Compare the output on Build/Userland/id:
* disasm:
...
_start (08048305-0804836b):
08048305 push ebp
...
08048366 call 0x0000df56
0804836b o16 nop
0804836d o16 nop
0804836f nop
(deregister_tm_clones (08048370-08048370))
08048370 mov eax, 0x080643e0
...
_ZN2AK8Utf8ViewC1ERKNS_6StringE (0805d9b2-0805d9b7):
_ZN2AK8Utf8ViewC2ERKNS_6StringE (0805d9b2-0805d9b7):
0805d9b2 jmp 0x00014ff2
0805d9b7 nop
* objdump -d:
08048305 <_start>:
8048305: 55 push %ebp
...
8048366: e8 9b dc 00 00 call 8056006 <exit>
804836b: 66 90 xchg %ax,%ax
804836d: 66 90 xchg %ax,%ax
804836f: 90 nop
08048370 <deregister_tm_clones>:
8048370: b8 e0 43 06 08 mov $0x80643e0,%eax
...
0805d9b2 <_ZN2AK8Utf8ViewC1ERKNS_6StringE>:
805d9b2: e9 eb f6 ff ff jmp 805d0a2 <_ZN2AK10StringViewC1ERKNS_6StringE>
805d9b7: 90 nop
Differences:
1. disasm can show multiple symbols that cover the same instructions.
I've only seen this happen for C1/C2 (and D1/D2) ctor/dtor pairs,
but it could conceivably happen with ICF as well.
2. disasm separates instructions that do not belong to a symbol with
a newline, so that nop padding isn't shown as part of a function
when it technically isn't.
3. disasm shows symbols that are skipped (due to having size 0)
in parenthesis, separated from preceding and following instructions.
When using Userspace<T> there are certain syscalls where being able
to cast between types is needed. You should be able to easily cast
away the Userspace<T> wrapper, but it's perfectly safe to be able to
cast the internal type that is being wrapped.
This function did a const_cast internally which made the call side look
"safe". This method is removed completely and call sites are replaced
with ByteBuffer::wrap(const_cast<void*>(data), size) which makes the
behaviour obvious.
We should always leak to an observed variable, otherwise
it's an actual leak. This is similar to AK::RefPtr::leak_ref()
which is also marked as [[nodiscard]].
There are use cases where a linked list is useful but it's also worth
the overhead to maintain a count so you can quickly answer queries of
the size of the list.