Although the spec doesn't mention it, if a flex item has box-sizing:
border-box, and the specified size suggestion is a definite size, we
have to subtract the borders and padding from the size before using it.
This fixes an issue seen in "This Week in Ladybird #4" where the
screenshots ended up in one long vertical stack instead of paired up
2 by 2.
Per SVG2, any coordinate pairs following a moveto command should be
treated as implicit lineto commands with the same absoluteness as the
moveto command.
This attribute is used to define how the viewBox should be scaled.
Previously the behaviour implemented was that of "xMidYMid meet", now
all of them work (expect none :P).
With this the Discord login backend is now correctly scaled/positioned.
This also brings our SVG code a little closer to the spec! With spec
comments and all :^)
(Minor non-visible update to layout tests)
When sizing a flex container with flex-direction:column under a
max-content height constraint, we were incorrectly truncating the
infinite available height to 0 when collecting flex items into lines.
This caused us to put every flex item in its own flex line, which is the
complete opposite of what we want during max-content intrinsic sizing,
as the layout would grow wide but not tall.
This allows accessing and looping over the path segments in a URL
without necessarily allocating a new vector if you want them percent
decoded too (which path_segment_at_index() has an option for).
This now defaults to serializing the path with percent decoded segments
(which is what all callers expect), but has an option not to. This fixes
`file://` URLs with spaces in their paths.
The name has been changed to serialize_path() path to make it more clear
that this method will generate a new string each call (except for the
cannot_be_a_base_url() case). A few callers have then been updated to
avoid repeatedly calling this function.
This isn't actually part of CSS-FLEXBOX-1, but all major engines honor
these properties in flex layout, and it's widely used on the web.
There's a bug open against the flexbox spec where fantasai says the
algorithm will be updated in CSS-FLEXBOX-2:
https://github.com/w3c/csswg-drafts/issues/2336
I've added comments to all the places where we adjust calculations for
gaps with "CSS-FLEXBOX-2" so we can find them easily. When that spec
becomes available, we can add proper spec links.
The consume(size_t) overload consumes "at most" as many bytes as
requested, but consume() consumes exactly one byte.
This commit makes sure to avoid consuming past EOF.
Fixes#18324.
Fixes#18325.
Previously, if we copied the last byte for a length of 100, we'd
recalculate the read span 100 times and memmove one byte 100 times,
which resulted in a lot of overhead.
Now, if we know that we have two consecutive copies of the data, we just
extend the distance to cover both copies, which halves the number of
times that we recalculate the span and actually call memmove.
This takes the running time of the attached benchmark case from 150ms
down to 15ms.
In CLDR 42 and earlier, we were able to assume all cldr-localename files
existed for every locale. They now do not exist for locales that don't
provide any localized data. Namely, this is the "und" locale (which is
an alias for the root locale, i.e. the locale we fall back to when a
user provides an unknown locale).
Further, we were previously able to assume that each currencies.json in
cldr-numbers contained all currencies. This file now excludes currencies
whose localized names are the same as the currency key. Therefore, we
now preprocess currencies.json to discover all currencies ahead of time,
much like we already do for languages.json.
Some of these are allocated upon initialization of the intrinsics, and
some lazily, but in neither case the getters actually return a nullptr.
This saves us a whole bunch of pointer dereferences (as NonnullGCPtr has
an `operator T&()`), and also has the interesting side effect of forcing
us to explicitly use the FunctionObject& overload of call(), as passing
a NonnullGCPtr is ambigous - it could implicitly be turned into a Value
_or_ a FunctionObject& (so we have to dereference manually).
VALUES-4 defines the internal representation of `calc()` as a tree of
calculation nodes. ( https://www.w3.org/TR/css-values-4/#calc-internal )
VALUES-3 lacked any definition here, so we had our own ad-hoc
implementation based around the spec grammar. This commit replaces that
with CalculationNodes representing each possible node in the tree.
There are no intended functional changes, though we do now support
nested calc() which previously did not work. For example:
`width: calc( 42 * calc(3 + 7) );`
I have added an example of this to our test page.
A couple of the layout tests that used `calc()` now return values that
are 0.5px different from before. There's no visual difference, so I
have updated the tests to use the new results.
Some refactoring of our root ca loading process:
- Remove duplicate code
- Remove duplicate calls to `parse_root_ca`
- Load user imported certificates in Browser/RequestServer
Now that these are kind of working, lets add a layout test to prevent
future regressions :^)
This test is the same as the previous example (it is copied, though
that seems to have been done for other tests, e.g. Acid 1).
As noted in serval comments doing this goes against the WC3 spec,
and breaks parsing then re-serializing URLs that contain percent
encoded data, that was not encoded using the same character set as
the serializer.
For example, previously if you had a URL like:
https:://foo.com/what%2F%2F (the path is what + '//' percent encoded)
Creating URL("https:://foo.com/what%2F%2F").serialize() would return:
https://foo.com/what//
Which is incorrect and not the same as the URL we passed. This is
because the re-serializing uses the PercentEncodeSet::Path which
does not include '/'.
Only doing the percent encoding in the setters fixes this, which
is required to navigate to Google Street View (which includes a
percent encoded URL in its URL).
Seems to fix#13477 too
`vformat()` can now accept format specifiers of the form
{:'[numeric-type]}. This will output a number with a comma separator
every 3 digits.
For example:
`dbgln("{:'d}", 9999999);` will output 9,999,999.
Binary, octal and hexadecimal numbers can also use this feature, for
example:
`dbgln("{:'x}", 0xffffffff);` will output ff,fff,fff.
While the tests for sed itself are simple to begin with, some
infrastructure was needed to make them simple.
Firstly, there was no home for tests for the applications under
Utilities, so I had to create a new subdirectory under Tests to host
them.
Secondly, and more importantly, there was previously no easy way to
launch an executable and easily feed it with data for its stdin, then
read its stdout/err and exit code. Looking around the repo I found that
the JS tests do a very similar thing though, so I decided to adapt that
solution for these tests, but with the higher purpose of someday moving
this new Process class to LibCore/Process, where the existing spawn
helpers are still very low level, and there is no representation of a
Process object that one can easily interact with.
Note that this Process implementation is very simple, offers limited
functionality, and it doesn't use the EventLoop, so it can break on long
inputs/outputs depending on the executable behavior.
When BufferedFile.can_read_line() was invoked on files with no newlines,
t incorrectly returned a false result for this single line that, even
though doesn't finish with a newline character, is still a line. Since
this method is usually used in tandem with read_line(), users would miss
reading this line (and hence all the file contents).
This commit fixes this corner case by adding another check after a
negative result from finding a newline character. This new check does
the same as the check that is done *before* looking for newlines, which
takes care of this problem, but only works for files that have at least
one newline (hence the buffer has already been filled).
A new unit test has been added that shows the use case. Without the
changes in this commit the test fails, which is a testament that this
commit really fixes the underlying issue.
WebP lossless files that use a color indexing transform with <= 16
colors use pixel bundling to pack 2, 4, or 8 pixels into a single pixel.
If the image's width doesn't happen to be an exact multiple of the
bundling factor, we need to:
1. Use ceil_div() instead of just dividing the width by the bundling
factor
2. Remember the original width and use it instead of computing
reduced width times bundling factor
This does these changes, and adds a simple test for it -- it at least
checks that the decoded images have the right size.
(I created these images myself in Photoshop, and used the same
technique as for Tests/LibGfx/test-inputs/catdog-alert-*.webp
to create images with a certain number of colors.)
For the test files, I opened Base/res/icons/catdog/alert.png in Adobe
Photoshop 2023, used Image->Mode->Index Color...->
Palette: Local (Perceptive) to reduce the number of colors to 13, 8, and
3 with transparency, and 2 without transparency, then converted it back
to Image->Mode->RGB Color (else it can't be saved as webp), then
File->Save a Copy... to save a WebP (mode lossless) for every palette
size.
The image is https://quakewiki.org/wiki/File:Qpalette.png in lossless
webp format with a color indexing transform.
I've created Qpalette.webp by running
examples/cwebp -z 0 ~/src/serenity/tmp.ppm -o Qpalette.webp
built at libwebp webmproject/libwebp@0825faa4c1 (without
png support, so I first ran
Build/lagom/image ~/Downloads/Qpalette.png -o tmp.ppm
to convert it from png to a format my cwebp binary could read).
This file also happens to explicitly set max_symbol, so it serves
as a test for that code path as well.
Grid and flex containers have their own rules for abspos items, so we
shouldn't try to be clever and put them in the "current" anonymous
wrapper block. That behavior is primarily for the benefit of block &
inline layout.
When calculating the intrinsic width of a block-level box, we now ignore
the preferred width entirely, and not just when the preferred width
should be treated as auto.
The condition for this was both confused and wrong, as it looked at the
available width around the box, but didn't check for a width constraint
on the box itself.
Just because the available width has an intrinsic sizing constraint
doesn't mean that the box is undergoing intrinsic sizing. It could also
be the box's containing block!
Rather than the very C-like API we currently have, accepting a void* and
a length, let's take a Bytes object instead. In almost all existing
cases, the compiler figures out the length.