Previously we would crash the process immediately when a promise
violation was found during a syscall. This is error prone, as we
don't unwind the stack. This means that in certain cases we can
leak resources, like an OwnPtr / RefPtr tracked on the stack. Or
even leak a lock acquired in a ScopeLockLocker.
To remedy this situation we move the promise violation handling to
the syscall handler, right before we return to user space. This
allows the code to follow the normal unwind path, and grantees
there is no longer any cleanup that needs to occur.
The Process::require_promise() and Process::require_no_promises()
functions were modified to return ErrorOr<void> so we enforce that
the errors are always propagated by the caller.
This change lays the foundation for making the require_promise return
an error hand handling the process abort outside of the syscall
implementations, to avoid cases where we would leak resources.
It also has the advantage that it makes removes a gs pointer read
to look up the current thread, then process for every syscall. We
can instead go through the Process this pointer in most cases.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
The compiler can re-order the structure (class) members if that's
necessary, so if we make Process to inherit from ProcFSExposedComponent,
even if the declaration is to inherit first from ProcessBase, then from
ProcFSExposedComponent and last from Weakable<Process>, the members of
class ProcFSExposedComponent (including the Ref-counted parts) are the
first members of the Process class.
This problem made it impossible to safely use the current toggling
method with the write-protection bit on the ProcessBase members, so
instead of inheriting from it, we make its members the last ones in the
Process class so we can safely locate and modify the corresponding page
write protection bit of these values.
We make sure that the Process class doesn't expand beyond 8192 bytes and
the protected values are always aligned on a page boundary.
Before we start disabling acquisition of the big process lock for
specific syscalls, make sure to document and assert that all the
lock is held during all syscalls.
The Process::Handler type has KResultOr<FlatPtr> as its return type.
Using a different return type with an equally-sized template parameter
sort of works but breaks once that condition is no longer true, e.g.
for KResultOr<int> on x86_64.
Ideally the syscall handlers would also take FlatPtrs as their args
so we can get rid of the reinterpret_cast for the function pointer
but I didn't quite feel like cleaning that up as well.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
The previous architecture had a huge flaw: the pointer to the protected
data was itself unprotected, allowing you to overwrite it at any time.
This patch reorganizes the protected data so it's part of the Process
class itself. (Actually, it's a new ProcessBase helper class.)
We use the first 4 KB of Process objects themselves as the new storage
location for protected data. Then we make Process objects page-aligned
using MAKE_ALIGNED_ALLOCATED.
This allows us to easily turn on/off write-protection for everything in
the ProcessBase portion of Process. :^)
Thanks to @bugaevc for pointing out the flaw! This is still not perfect
but it's an improvement.
This is necessary because if a process changes the state to Stopped
or resumes from that state, a wait entry is created in the parent
process. So, if a child process does this before disown is called,
we need to clear those entries to avoid leaking references/zombies
that won't be cleaned up until the former parent exits.
This also should solve an even more unlikely corner case where another
thread is waiting on a pid that is being disowned by another thread.
This compiles, and contains exactly the same bugs as before.
The regex 'FIXME: PID/' should reveal all markers that I left behind, including:
- Incomplete conversion
- Issues or things that look fishy
- Actual bugs that will go wrong during runtime
This syscall allows a parent process to disown a child process, setting
its parent PID to 0.
Unparented processes are automatically reaped by the kernel upon exit,
and no sys$waitid() is required. This will make it much nicer to do
spawn-and-forget which is common in the GUI environment.