This patch adds a map of Layout::Node to FormattingState::NodeState.
Instead of updating layout nodes incrementally as layout progresses
through the formatting contexts, all updates are now written to the
corresponding NodeState instead.
At the end of layout, FormattingState::commit() is called, which
transfers all the values from the NodeState objects to the Node.
This will soon allow us to perform completely non-destructive layouts
which don't affect the tree.
Note that there are many imperfections here, and still many places
where we assign to the NodeState, but later read directly from the Node
instead. I'm just committing at this stage to make subsequent diffs
easier to understand.
The purpose of this new object will be to keep track of various states
during an ongoing layout.
Until now, we've been updating layout tree nodes as we go during layout,
which adds an invisible layer of implicit serialization to the whole
layout system.
My idea with FormattingState is that running layout will produce a
result entirely contained within the FormattingState object. At the end
of layout, it can then be applied to the layout tree, or simply queried
for some metrics we were trying to determine.
When doing subtree layouts to determine intrinsic sizes, we will
eventually be able to clone the current FormattingState, and run the
subtree layout in isolation, opening up opportunities for parallelism.
This first patch doesn't go very far though, it merely adds the object
as a skeleton class, and makes sure the root BFC has one. :^)
This property represents the CSS content size, so let's reduce ambiguity
by using the spec terminology.
We also bring a bunch of related functions along for the ride.
A lot of this is quite ugly, but it should only be so until I remove
Length::Type::Percentage entirely. (Which should happen later in this
PR, otherwise, yell at me!) For now, a lot of things have to be
resolved twice, first from a LengthPercentage to a Length, and then
from a Length to a pixel one.
Per the spec, only a BlockContainer" can have line boxes, so let's not
clutter up every Layout::Box with line boxes.
This also allows us to establish an invariant that BFC and IFC always
operate on a Layout::BlockContainer.
Note that if BlockContainer has all block-level children, its line boxes
are not used for anything. They are only used in the all inline-level
children scenario.
Our "frame" concept very closely matches what the web specs call a
"browsing context", so let's rename it to that. :^)
The "main frame" becomes the "top-level browsing context",
and "sub-frames" are now "nested browsing contexts".
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
As well as correctly calculating the height of TableRowBox, this change
calculates the heights of TableRowGroupBoxs also.
As before, this does not correctly take into consideration the 'height'
attribute.
Now the horizontal layout is approximately correct for the
TableRowGroupBoxs we can now see that the `layout_row` method will need
updating to correctly calculate cell width across all rows, not just the
current TableRowGroupBox.