Replace the old logic where we would start with a host build, and swap
all the CMake compiler and target variables underneath it to trick
CMake into building for Serenity after we configured and built the Lagom
code generators.
The SuperBuild creates two ExternalProjects, one for Lagom and one for
Serenity. The Serenity project depends on the install stage for the
Lagom build. The SuperBuild also generates a CMakeToolchain file for the
Serenity build to use that replaces the old toolchain file that was only
used for Ports.
To ensure that code generators are rebuilt when core libraries such as
AK and LibCore are modified, developers will need to direct their manual
`ninja` invocations to the SuperBuild's binary directory instead of the
Serenity binary directory.
This commit includes warning coalescing and option style cleanup for the
affected CMakeLists in the Kernel, top level, and runtime support
libraries. A large part of the cleanup is replacing USE_CLANG_TOOLCHAIN
with the proper CMAKE_CXX_COMPILER_ID variable, which will no longer be
confused by a host clang compiler.
Ninja disables its fancy output mode when it's not writing to a TTY.
So don't pipe its output into something else, so that it writes to
a TTY if the invoking terminal is a TTY.
`LLVM_LLVM_BUILD_LLVM_DYLIB` does not exist, so passing this does
nothing but make CMake warn.
However, since we pass `LLVM_LINK_LLVM_DYLIB`, `LLVM_BUILD_LLVM_DYLIB`
(the correct spelling) defaults to true anyways. So let's pass fewer
flags.
No behavior change, but fixes a CMake warning.
I locally modified Meta/serenity.sh to pass `--dev` to BuildIt.sh
in build_toolchain(). Then I ran `Meta/serenity.sh rebuild-toolchain`,
cd'd into Toolchain/Tarballs/binutils-2.37, `git add`ed unadded files in
`git status`, and then ran `git diff > ../../Patches/binutils.patch`.
Then I did the same for Toolchain/Tarballs/gcc-11.2.0 (and was careful
not to `git add` serenity-kernel.h, since that's created by
Toolchain/BuildIt.sh).
No behavior change. This just rewrites the patch like git writes it.
This library is used by virtually all executables in the Clang
toolchain. By default, it is linked statically, which leads to huge
file sizes and us running out of artifact storage disk space on CI.
This contains all the bits and pieces necessary to build a Clang binary
that will correctly compile SerenityOS.
I had some trouble with getting LLVM building with a single command, so
for now, I decided to build each LLVM component in a separate command
invocation. In the future, we can also make the main llvm build step
architecture-independent, but that would come with extra work to make
library and include paths work.
The binutils build invocation and related boilerplate is duplicated
because we only use `objdump` from GNU binutils in the Clang toolchain,
so most features can be disabled.
CMake specifies -arch arm64 for our toolchain. Unfortunately that's an
option GCC only understands when built for macOS. This causes the build
to fail.
I haven't been able to get CMake to not specify that option so this adds
a dummy option to GCC.
Previously we'd place the QEMU binaries into the architecture-specific
toolchain directory. This is a problem because the BuildIt.sh script
clears those directories which also removes the QEMU binaries users
may have built earlier. Also, the QEMU binaries are not specific to
the target architecture.
Docker is a nice way of doing build automation, or just
containerizing builds for increased safety and isolating unstable
packages. The old Dockerfile in the toolchain did not satisfy these
needs. The new Dockerfile is known to run successfully on Docker
version 20.10.7. It clones the SerenityOS repo and builds the
toolchain. In this way, it is intended to be a starting point for other
Docker images that can e.g. run builds. For example, one can simply run
this docker image as-is, exec a shell in it and run a build there.
Rather than having the toolchain build fail half-way through we should
check whether the user has installed all the required tools and
libraries early on.
Previously the buildstep function would obscure error codes because
the return value of the function was the exit code for the sed command
which caused us to continue execution even though one of the build
steps had failed.
With set -o pipefail the return value of the buildstep function is
the real command's exit code.
This ensures inter-machine compatibility by not emitting any processor
specific instructions. This fixes the issue raised by the non AVX-512
supporting GitHub actions runners.
-march=native specializes the binaries for the CPU features available on
the CPU the binary is being compiled on. This matches the needs of the
Toolchain, as it's always built and used on that machine only.
This should be safe for the github actions VMs as well, as they all run
on a standard VM SKU in "the cloud".
I saw small but notable improvements in end-2-end build times in my
local testing. Each compilation unit is on average around a second
faster on my Intel(R) Core(TM) i7-8705G CPU @ 3.10GHz.
This makes stdlib.h and stdio.h functions available in the std
namespace for C++.
libstdc++v3's link tests can fail if you don't have an up-to-date
build directory, for example:
1. Have libc with missing _Exit symbol because you haven't done
a build since that was added.
2. Run toolchain rebuild. libstdc++v3's configure script will
realize that it can do link tests in general but will fail
later on when it tries to link a program that tests for _Exit.
Even though this is a toolchain patch this does not necessarily
require rebuilding the toolchain right away. This is only required
once we start using any of these new members in the std namespace,
e.g. for ports.
This fixes the -nodefaultlibs flag for gcc which previously
linked against libgcc_s anyway. Even though this is a toolchain
patch we don't need to rebuild the toolchain right away.
BuildIt.sh had a bunch of SC2086 errors, where we were not quoting
variables in variable expansions. The logic being:
Quoting variables prevents word splitting and glob expansion,
and prevents the script from breaking when input contains spaces,
line feeds, glob characters and such.
Reference: https://github.com/koalaman/shellcheck/wiki/SC2086
As bcoles noticed in #6772, shellcheck actually found a real bug here,
where the user's build directory included spaces.
Close: #6772
BuildFuseExt2.sh was saying it should be run under /bin/sh but it is
using bash extensions like pushd/popd, ${BASH_SOURCE[0]}, etc. So just
run it under bash to avoid any potential issues.
Ordinarily this would force the compiler to not inline certain
symbols and call them via the PLT instead. To counteract this
I've also added -fno-semantic-interposition which disables
ELF symbol interposition. Our dynamic loader doesn't support
this anyway and we might even consider not implementing this
at all.
Even though this is a toolchain change this doesn't require
rebuilding the toolchain unless you're planning to build
for the x86_64 arch.