In cases where we know a string literal will fit in the short string
storage, we can do so at compile time without needing to handle error
propagation. If the provided string literal is too long, a compilation
error will be emitted due to the failed VERIFY statement being a non-
constant expression.
This implements a FlyString that will de-duplicate String instances. The
FlyString will store the raw encoded data of the String instance: If the
String is a short string, FlyString holds the String::ShortString bytes;
otherwise FlyString holds a pointer to the Detail::StringData.
FlyString itself does not know about String's storage or how to refcount
its Detail::StringData. It defers to String to implement these details.
These instances were detected by searching for files that include
AK/Memory.h, but don't match the regex:
\\b(fast_u32_copy|fast_u32_fill|secure_zero|timing_safe_compare)\\b
This regex is pessimistic, so there might be more files that don't
actually use any memory function.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
The previous moved-from state was the null string. This violates both
our invariant that String is never null, and also the C++ contract that
the moved-from state must be valid but unspecified. The empty short
string state is of course valid, so it satisfies both invariants. It
also allows us to remove any extra checks for the null state.
The reason this change is made is primarily because swap() requires
moved-from objects to be reassignable (C++ allows this). Because the
move assignment of String would not check the null state, it crashed
trying to increment the data reference count (nullptr signals a
non-short string). This meant that e.g. quick_sort'ing String would
crash immediately.
DeprecatedString (formerly String) has been with us since the start,
and it has served us well. However, it has a number of shortcomings
that I'd like to address.
Some of these issues are hard if not impossible to solve incrementally
inside of DeprecatedString, so instead of doing that, let's build a new
String class and then incrementally move over to it instead.
Problems in DeprecatedString:
- It assumes string allocation never fails. This makes it impossible
to use in allocation-sensitive contexts, and is the reason we had to
ban DeprecatedString from the kernel entirely.
- The awkward null state. DeprecatedString can be null. It's different
from the empty state, although null strings are considered empty.
All code is immediately nicer when using Optional<DeprecatedString>
but DeprecatedString came before Optional, which is how we ended up
like this.
- The encoding of the underlying data is ambiguous. For the most part,
we use it as if it's always UTF-8, but there have been cases where
we pass around strings in other encodings (e.g ISO8859-1)
- operator[] and length() are used to iterate over DeprecatedString one
byte at a time. This is done all over the codebase, and will *not*
give the right results unless the string is all ASCII.
How we solve these issues in the new String:
- Functions that may allocate now return ErrorOr<String> so that ENOMEM
errors can be passed to the caller.
- String has no null state. Use Optional<String> when needed.
- String is always UTF-8. This is validated when constructing a String.
We may need to add a bypass for this in the future, for cases where
you have a known-good string, but for now: validate all the things!
- There is no operator[] or length(). You can get the underlying data
with bytes(), but for iterating over code points, you should be using
an UTF-8 iterator.
Furthermore, it has two nifty new features:
- String implements a small string optimization (SSO) for strings that
can fit entirely within a pointer. This means up to 3 bytes on 32-bit
platforms, and 7 bytes on 64-bit platforms. Such small strings will
not be heap-allocated.
- String can create substrings without making a deep copy of the
substring. Instead, the superstring gets +1 refcount from the
substring, and it acts like a view into the superstring. To make
substrings like this, use the substring_with_shared_superstring() API.
One caveat:
- String does not guarantee that the underlying data is null-terminated
like DeprecatedString does today. While this was nifty in a handful of
places where we were calling C functions, it did stand in the way of
shared-superstring substrings.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
These are guarded with #ifndef KERNEL, since doubles (and floats) are
not allowed in KERNEL mode.
In StringUtils there is convert_to_floating_point which does have a
template parameter incase you have a templated type.
During the removal of StringView(char const*), all users of these
functions were removed, and they are of dubious value (relying on
implicit StringView conversion).
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
This isn't a complete conversion to ErrorOr<void>, but a good chunk.
The end goal here is to propagate buffer allocation failures to the
caller, and allow the use of TRY() with formatting functions.
This removes the awkward String::replace API which was the only String
API which mutated the String and replaces it with a new immutable
version that returns a new String with the replacements applied. This
also fixes a couple of UAFs that were caused by the use of this API.
As an optimization an equivalent StringView::replace API was also added
to remove an unnecessary String allocations in the format of:
`String { view }.replace(...);`
This was needlessly copying StringView arguments, and was also using
strstr internally, which meant it was doing a bunch of unnecessary
strlen calls on it. This also moves the implementation to StringUtils
to allow API consistency between String and StringView.