Now that we reclaim the memory range that is created by KASLR before
the start of the kernel image, there's no need to be conservative with
the KASLR offset.
This ensures we don't just waste the memory range between the default
base load address and the actual load address that was shifted by the
KASLR offset.
This enables further work on implementing KASLR by adding relocation
support to the pre-kernel and updating the kernel to be less dependent
on specific virtual memory layouts.
This allows us to specify virtual addresses for things the kernel should
access via virtual addresses later on. By doing this we can make the
kernel independent from specific physical addresses.
Previously the kernel relied on a fixed offset between virtual and
physical addresses based on the kernel's load address. This allows us
to specify an independent offset.
This implements a simple bootloader that is capable of loading ELF64
kernel images. It does this by using QEMU/GRUB to load the kernel image
from disk and pass it to our bootloader as a Multiboot module.
The bootloader then parses the ELF image and sets it up appropriately.
The kernel's entry point is a C++ function with architecture-native
code.
Co-authored-by: Liav A <liavalb@gmail.com>