/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Really really *really* Q&D malloc() and free() implementations * just to get going. Don't ever let anyone see this shit. :^) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SANITIZE_KMALLOC #define CHUNK_SIZE 32 #define POOL_SIZE (2 * MiB) #define ETERNAL_RANGE_SIZE (2 * MiB) static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace() static void kmalloc_allocate_backup_memory(); struct KmallocGlobalHeap { struct ExpandGlobalHeap { KmallocGlobalHeap& m_global_heap; ExpandGlobalHeap(KmallocGlobalHeap& global_heap) : m_global_heap(global_heap) { } bool m_adding { false }; bool add_memory(size_t allocation_request) { if (!MemoryManager::is_initialized()) { klog() << "kmalloc(): Cannot expand heap before MM is initialized!"; return false; } ASSERT(!m_adding); TemporaryChange change(m_adding, true); // At this point we have very little memory left. Any attempt to // kmalloc() could fail, so use our backup memory first, so we // can't really reliably allocate even a new region of memory. // This is why we keep a backup region, which we can auto region = move(m_global_heap.m_backup_memory); if (!region) { // Be careful to not log too much here. We don't want to trigger // any further calls to kmalloc(). We're already out of memory // and don't have any backup memory, either! klog() << "kmalloc(): Cannot expand heap: no backup memory"; return false; } // At this point we should have at least enough memory from the // backup region to be able to log properly klog() << "kmalloc(): Adding memory to heap at " << region->vaddr() << ", bytes: " << region->size(); auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size()); m_global_heap.m_subheap_memory.append(region.release_nonnull()); // Since we pulled in our backup heap, make sure we allocate another // backup heap before returning. Otherwise we potentially lose // the ability to expand the heap next time we get called. ScopeGuard guard([&]() { // We may need to defer allocating backup memory because the // heap expansion may have been triggered while holding some // other spinlock. If the expansion happens to need the same // spinlock we would deadlock. So, if we're in any lock, defer Processor::current().deferred_call_queue(kmalloc_allocate_backup_memory); }); // Now that we added our backup memory, check if the backup heap // was big enough to likely satisfy the request if (subheap.free_bytes() < allocation_request) { // Looks like we probably need more size_t memory_size = PAGE_ROUND_UP(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request)); // Add some more to the new heap. We're already using it for other // allocations not including the original allocation_request // that triggered heap expansion. If we don't allocate memory_size += 1 * MiB; region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Region::Access::Read | Region::Access::Write, false, AllocationStrategy::AllocateNow); if (region) { klog() << "kmalloc(): Adding even more memory to heap at " << region->vaddr() << ", bytes: " << region->size(); m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size()); m_global_heap.m_subheap_memory.append(region.release_nonnull()); } else { klog() << "kmalloc(): Could not expand heap to satisfy allocation of " << allocation_request << " bytes"; return false; } } return true; } bool remove_memory(void* memory) { // This is actually relatively unlikely to happen, because it requires that all // allocated memory in a subheap to be freed. Only then the subheap can be removed... for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) { if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) { auto region = m_global_heap.m_subheap_memory.take(i); if (!m_global_heap.m_backup_memory) { klog() << "kmalloc(): Using removed memory as backup: " << region->vaddr() << ", bytes: " << region->size(); m_global_heap.m_backup_memory = move(region); } else { klog() << "kmalloc(): Queue removing memory from heap at " << region->vaddr() << ", bytes: " << region->size(); Processor::deferred_call_queue([this, region = move(region)]() mutable { // We need to defer freeing the region to prevent a potential // deadlock since we are still holding the kmalloc lock // We don't really need to do anything other than holding // onto the region. Unless we already used the backup // memory, in which case we want to use the region as the // new backup. ScopedSpinLock lock(s_lock); if (!m_global_heap.m_backup_memory) { klog() << "kmalloc(): Queued memory region at " << region->vaddr() << ", bytes: " << region->size() << " will be used as new backup"; m_global_heap.m_backup_memory = move(region); } else { klog() << "kmalloc(): Queued memory region at " << region->vaddr() << ", bytes: " << region->size() << " will be freed now"; } }); } return true; } } klog() << "kmalloc(): Cannot remove memory from heap: " << VirtualAddress(memory); return false; } }; typedef ExpandableHeap HeapType; HeapType m_heap; NonnullOwnPtrVector m_subheap_memory; OwnPtr m_backup_memory; KmallocGlobalHeap(u8* memory, size_t memory_size) : m_heap(memory, memory_size, ExpandGlobalHeap(*this)) { } void allocate_backup_memory() { if (m_backup_memory) return; m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Region::Access::Read | Region::Access::Write, false, AllocationStrategy::AllocateNow); } size_t backup_memory_bytes() const { return m_backup_memory ? m_backup_memory->size() : 0; } }; static KmallocGlobalHeap* g_kmalloc_global; // We need to make sure to not stomp on global variables or other parts // of the kernel image! extern u32 end_of_kernel_image; u8* const kmalloc_start = (u8*)PAGE_ROUND_UP(&end_of_kernel_image); u8* const kmalloc_end = kmalloc_start + (ETERNAL_RANGE_SIZE + POOL_SIZE) + sizeof(KmallocGlobalHeap); #define ETERNAL_BASE (kmalloc_start + sizeof(KmallocGlobalHeap)) #define KMALLOC_BASE (ETERNAL_BASE + ETERNAL_RANGE_SIZE) static size_t g_kmalloc_bytes_eternal = 0; static size_t g_kmalloc_call_count; static size_t g_kfree_call_count; bool g_dump_kmalloc_stacks; static u8* s_next_eternal_ptr; static u8* s_end_of_eternal_range; static void kmalloc_allocate_backup_memory() { g_kmalloc_global->allocate_backup_memory(); } void kmalloc_enable_expand() { g_kmalloc_global->allocate_backup_memory(); } void kmalloc_init() { memset((void*)KMALLOC_BASE, 0, POOL_SIZE); g_kmalloc_global = new (kmalloc_start) KmallocGlobalHeap(KMALLOC_BASE, POOL_SIZE); // Place heap at kmalloc_start s_lock.initialize(); s_next_eternal_ptr = (u8*)ETERNAL_BASE; s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE; } void* kmalloc_eternal(size_t size) { size = round_up_to_power_of_two(size, sizeof(void*)); ScopedSpinLock lock(s_lock); void* ptr = s_next_eternal_ptr; s_next_eternal_ptr += size; ASSERT(s_next_eternal_ptr < s_end_of_eternal_range); g_kmalloc_bytes_eternal += size; return ptr; } void* kmalloc_impl(size_t size) { ScopedSpinLock lock(s_lock); ++g_kmalloc_call_count; if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) { dbgln("kmalloc({})", size); Kernel::dump_backtrace(); } void* ptr = g_kmalloc_global->m_heap.allocate(size); if (!ptr) { klog() << "kmalloc(): PANIC! Out of memory (no suitable block for size " << size << ")"; Kernel::dump_backtrace(); Processor::halt(); } return ptr; } void kfree(void* ptr) { if (!ptr) return; ScopedSpinLock lock(s_lock); ++g_kfree_call_count; g_kmalloc_global->m_heap.deallocate(ptr); } void* krealloc(void* ptr, size_t new_size) { ScopedSpinLock lock(s_lock); return g_kmalloc_global->m_heap.reallocate(ptr, new_size); } void* operator new(size_t size) { return kmalloc(size); } void* operator new[](size_t size) { return kmalloc(size); } void get_kmalloc_stats(kmalloc_stats& stats) { ScopedSpinLock lock(s_lock); stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes(); stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes(); stats.bytes_eternal = g_kmalloc_bytes_eternal; stats.kmalloc_call_count = g_kmalloc_call_count; stats.kfree_call_count = g_kfree_call_count; }