/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { #define PATA_PRIMARY_IRQ 14 #define PATA_SECONDARY_IRQ 15 UNMAP_AFTER_INIT NonnullRefPtr IDEChannel::create(const IDEController& controller, IOAddressGroup io_group, ChannelType type) { return adopt_ref(*new IDEChannel(controller, io_group, type)); } UNMAP_AFTER_INIT NonnullRefPtr IDEChannel::create(const IDEController& controller, u8 irq, IOAddressGroup io_group, ChannelType type) { return adopt_ref(*new IDEChannel(controller, irq, io_group, type)); } RefPtr IDEChannel::master_device() const { return m_master; } RefPtr IDEChannel::slave_device() const { return m_slave; } UNMAP_AFTER_INIT void IDEChannel::initialize() { disable_irq(); dbgln_if(PATA_DEBUG, "IDEChannel: {} IO base: {}", channel_type_string(), m_io_group.io_base()); dbgln_if(PATA_DEBUG, "IDEChannel: {} control base: {}", channel_type_string(), m_io_group.control_base()); if (m_io_group.bus_master_base().has_value()) dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base: {}", channel_type_string(), m_io_group.bus_master_base().value()); else dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base disabled", channel_type_string()); // reset the channel u8 device_control = m_io_group.control_base().in(); // Wait 30 milliseconds IO::delay(30000); m_io_group.control_base().out(device_control | (1 << 2)); // Wait 30 milliseconds IO::delay(30000); m_io_group.control_base().out(device_control); // Wait up to 30 seconds before failing if (!select_device_and_wait_until_not_busy(DeviceType::Master, 30000)) { dbgln("IDEChannel: reset failed, busy flag on master stuck"); return; } // Wait up to 30 seconds before failing if (!select_device_and_wait_until_not_busy(DeviceType::Slave, 30000)) { dbgln("IDEChannel: reset failed, busy flag on slave stuck"); return; } detect_disks(); // Note: calling to detect_disks could generate an interrupt, clear it if that's the case clear_pending_interrupts(); } UNMAP_AFTER_INIT IDEChannel::IDEChannel(const IDEController& controller, u8 irq, IOAddressGroup io_group, ChannelType type) : IRQHandler(irq) , m_channel_type(type) , m_io_group(io_group) , m_parent_controller(controller) { initialize(); } UNMAP_AFTER_INIT IDEChannel::IDEChannel(const IDEController& controller, IOAddressGroup io_group, ChannelType type) : IRQHandler(type == ChannelType::Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ) , m_channel_type(type) , m_io_group(io_group) , m_parent_controller(controller) { initialize(); } void IDEChannel::clear_pending_interrupts() const { m_io_group.io_base().offset(ATA_REG_STATUS).in(); } UNMAP_AFTER_INIT IDEChannel::~IDEChannel() = default; void IDEChannel::start_request(AsyncBlockDeviceRequest& request, bool is_slave, u16 capabilities) { MutexLocker locker(m_lock); VERIFY(m_current_request.is_null()); dbgln_if(PATA_DEBUG, "IDEChannel::start_request"); m_current_request = request; m_current_request_block_index = 0; m_current_request_flushing_cache = false; if (request.request_type() == AsyncBlockDeviceRequest::Read) ata_read_sectors(is_slave, capabilities); else ata_write_sectors(is_slave, capabilities); } void IDEChannel::complete_current_request(AsyncDeviceRequest::RequestResult result) { // NOTE: this may be called from the interrupt handler! VERIFY(m_current_request); VERIFY(m_request_lock.is_locked()); // Now schedule reading back the buffer as soon as we leave the irq handler. // This is important so that we can safely write the buffer back, // which could cause page faults. Note that this may be called immediately // before Processor::deferred_call_queue returns! g_io_work->queue([this, result]() { dbgln_if(PATA_DEBUG, "IDEChannel::complete_current_request result: {}", (int)result); MutexLocker locker(m_lock); VERIFY(m_current_request); auto current_request = m_current_request; m_current_request.clear(); current_request->complete(result); }); } static void print_ide_status(u8 status) { dbgln("IDEChannel: print_ide_status: DRQ={} BSY={}, DRDY={}, DSC={}, DF={}, CORR={}, IDX={}, ERR={}", (status & ATA_SR_DRQ) != 0, (status & ATA_SR_BSY) != 0, (status & ATA_SR_DRDY) != 0, (status & ATA_SR_DSC) != 0, (status & ATA_SR_DF) != 0, (status & ATA_SR_CORR) != 0, (status & ATA_SR_IDX) != 0, (status & ATA_SR_ERR) != 0); } void IDEChannel::try_disambiguate_error() { VERIFY(m_lock.is_locked()); dbgln("IDEChannel: Error cause:"); switch (m_device_error) { case ATA_ER_BBK: dbgln("IDEChannel: - Bad block"); break; case ATA_ER_UNC: dbgln("IDEChannel: - Uncorrectable data"); break; case ATA_ER_MC: dbgln("IDEChannel: - Media changed"); break; case ATA_ER_IDNF: dbgln("IDEChannel: - ID mark not found"); break; case ATA_ER_MCR: dbgln("IDEChannel: - Media change request"); break; case ATA_ER_ABRT: dbgln("IDEChannel: - Command aborted"); break; case ATA_ER_TK0NF: dbgln("IDEChannel: - Track 0 not found"); break; case ATA_ER_AMNF: dbgln("IDEChannel: - No address mark"); break; default: dbgln("IDEChannel: - No one knows"); break; } } bool IDEChannel::handle_irq(const RegisterState&) { u8 status = m_io_group.io_base().offset(ATA_REG_STATUS).in(); m_entropy_source.add_random_event(status); SpinlockLocker lock(m_request_lock); dbgln_if(PATA_DEBUG, "IDEChannel: interrupt: DRQ={}, BSY={}, DRDY={}", (status & ATA_SR_DRQ) != 0, (status & ATA_SR_BSY) != 0, (status & ATA_SR_DRDY) != 0); if (!m_current_request) { dbgln("IDEChannel: IRQ but no pending request!"); return false; } if (status & ATA_SR_ERR) { print_ide_status(status); m_device_error = m_io_group.io_base().offset(ATA_REG_ERROR).in(); dbgln("IDEChannel: Error {:#02x}!", (u8)m_device_error); try_disambiguate_error(); complete_current_request(AsyncDeviceRequest::Failure); return true; } m_device_error = 0; // Now schedule reading/writing the buffer as soon as we leave the irq handler. // This is important so that we can safely access the buffers, which could // trigger page faults g_io_work->queue([this]() { MutexLocker locker(m_lock); SpinlockLocker lock(m_request_lock); if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) { dbgln_if(PATA_DEBUG, "IDEChannel: Read block {}/{}", m_current_request_block_index, m_current_request->block_count()); if (ata_do_read_sector()) { if (++m_current_request_block_index >= m_current_request->block_count()) { complete_current_request(AsyncDeviceRequest::Success); return; } // Wait for the next block enable_irq(); } } else { if (!m_current_request_flushing_cache) { dbgln_if(PATA_DEBUG, "IDEChannel: Wrote block {}/{}", m_current_request_block_index, m_current_request->block_count()); if (++m_current_request_block_index >= m_current_request->block_count()) { // We read the last block, flush cache VERIFY(!m_current_request_flushing_cache); m_current_request_flushing_cache = true; m_io_group.io_base().offset(ATA_REG_COMMAND).out(ATA_CMD_CACHE_FLUSH); } else { // Read next block ata_do_write_sector(); } } else { complete_current_request(AsyncDeviceRequest::Success); } } }); return true; } static void io_delay() { for (int i = 0; i < 4; ++i) IO::in8(0x3f6); } bool IDEChannel::select_device_and_wait_until_not_busy(DeviceType device_type, size_t milliseconds_timeout) { IO::delay(20); u8 slave = device_type == DeviceType::Slave; m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out(0xA0 | (slave << 4)); IO::delay(20); size_t time_elapsed = 0; while (m_io_group.control_base().in() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) { IO::delay(1000); time_elapsed++; } return time_elapsed <= milliseconds_timeout; } bool IDEChannel::wait_until_not_busy(size_t milliseconds_timeout) { size_t time_elapsed = 0; while (m_io_group.control_base().in() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) { IO::delay(1000); time_elapsed++; } return time_elapsed <= milliseconds_timeout; } StringView IDEChannel::channel_type_string() const { if (m_channel_type == ChannelType::Primary) return "Primary"sv; return "Secondary"sv; } UNMAP_AFTER_INIT void IDEChannel::detect_disks() { auto channel_string = [](u8 i) -> StringView { if (i == 0) return "master"sv; return "slave"sv; }; // There are only two possible disks connected to a channel for (auto i = 0; i < 2; i++) { if (!select_device_and_wait_until_not_busy(i == 0 ? DeviceType::Master : DeviceType::Slave, 32000)) { dbgln("IDEChannel: Timeout waiting for busy flag to clear during {} {} detection", channel_type_string(), channel_string(i)); continue; } auto status = m_io_group.control_base().in(); if (status == 0x0) { dbgln_if(PATA_DEBUG, "IDEChannel: No {} {} disk detected!", channel_type_string(), channel_string(i)); continue; } m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out(0); m_io_group.io_base().offset(ATA_REG_LBA0).out(0); m_io_group.io_base().offset(ATA_REG_LBA1).out(0); m_io_group.io_base().offset(ATA_REG_LBA2).out(0); m_io_group.io_base().offset(ATA_REG_COMMAND).out(ATA_CMD_IDENTIFY); // Send the ATA_IDENTIFY command // Wait 10 second for the BSY flag to clear if (!wait_until_not_busy(2000)) { dbgln_if(PATA_DEBUG, "IDEChannel: No {} {} disk detected, BSY flag was not reset!", channel_type_string(), channel_string(i)); continue; } bool check_for_atapi = false; bool device_presence = true; bool command_set_is_atapi = false; size_t milliseconds_elapsed = 0; for (;;) { // Wait about 10 seconds if (milliseconds_elapsed > 2000) break; u8 status = m_io_group.control_base().in(); if (status & ATA_SR_ERR) { dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device is not ATA. Will check for ATAPI.", channel_type_string(), channel_string(i)); check_for_atapi = true; break; } if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) { dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device appears to be ATA.", channel_type_string(), channel_string(i)); break; } if (status == 0 || status == 0xFF) { dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device presence - none.", channel_type_string(), channel_string(i)); device_presence = false; break; } IO::delay(1000); milliseconds_elapsed++; } if (!device_presence) { continue; } if (milliseconds_elapsed > 10000) { dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device state unknown. Timeout exceeded.", channel_type_string(), channel_string(i)); continue; } if (check_for_atapi) { u8 cl = m_io_group.io_base().offset(ATA_REG_LBA1).in(); u8 ch = m_io_group.io_base().offset(ATA_REG_LBA2).in(); if ((cl == 0x14 && ch == 0xEB) || (cl == 0x69 && ch == 0x96)) { command_set_is_atapi = true; dbgln("IDEChannel: {} {} device appears to be ATAPI. We're going to ignore it for now as we don't support it.", channel_type_string(), channel_string(i)); continue; } else { dbgln("IDEChannel: {} {} device doesn't appear to be ATA or ATAPI. Ignoring it.", channel_type_string(), channel_string(i)); continue; } } // FIXME: Handle possible OOM situation here. ByteBuffer wbuf = ByteBuffer::create_uninitialized(512).release_value_but_fixme_should_propagate_errors(); ByteBuffer bbuf = ByteBuffer::create_uninitialized(512).release_value_but_fixme_should_propagate_errors(); u8* b = bbuf.data(); u16* w = (u16*)wbuf.data(); for (u32 i = 0; i < 256; ++i) { u16 data = m_io_group.io_base().offset(ATA_REG_DATA).in(); *(w++) = data; *(b++) = MSB(data); *(b++) = LSB(data); } // "Unpad" the device name string. for (u32 i = 93; i > 54 && bbuf[i] == ' '; --i) bbuf[i] = 0; volatile ATAIdentifyBlock& identify_block = (volatile ATAIdentifyBlock&)(*wbuf.data()); u16 capabilities = identify_block.capabilities[0]; // If the drive is so old that it doesn't support LBA, ignore it. if (!(capabilities & ATA_CAP_LBA)) continue; u64 max_addressable_block = identify_block.max_28_bit_addressable_logical_sector; // if we support 48-bit LBA, use that value instead. if (identify_block.commands_and_feature_sets_supported[1] & (1 << 10)) max_addressable_block = identify_block.user_addressable_logical_sectors_count; dbgln("IDEChannel: {} {} {} device found: Name={}, Capacity={}, Capabilities={:#04x}", channel_type_string(), channel_string(i), !command_set_is_atapi ? "ATA" : "ATAPI", ((char*)bbuf.data() + 54), max_addressable_block * 512, capabilities); // FIXME: Don't assume all drives will have logical sector size of 512 bytes. ATADevice::Address address = { m_channel_type == ChannelType::Primary ? static_cast(0) : static_cast(1), static_cast(i) }; if (i == 0) { m_master = ATADiskDevice::create(m_parent_controller, address, capabilities, 512, max_addressable_block); } else { m_slave = ATADiskDevice::create(m_parent_controller, address, capabilities, 512, max_addressable_block); } } } void IDEChannel::ata_access(Direction direction, bool slave_request, u64 lba, u8 block_count, u16 capabilities) { VERIFY(m_lock.is_locked()); VERIFY(m_request_lock.is_locked()); LBAMode lba_mode; u8 head = 0; VERIFY(capabilities & ATA_CAP_LBA); if (lba >= 0x10000000) { lba_mode = LBAMode::FortyEightBit; head = 0; } else { lba_mode = LBAMode::TwentyEightBit; head = (lba & 0xF000000) >> 24; } // Wait 1 second wait_until_not_busy(1000); // We need to select the drive and then we wait 20 microseconds... and it doesn't hurt anything so let's just do it. m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out(0xE0 | (static_cast(slave_request) << 4) | head); IO::delay(20); if (lba_mode == LBAMode::FortyEightBit) { m_io_group.io_base().offset(ATA_REG_SECCOUNT1).out(0); m_io_group.io_base().offset(ATA_REG_LBA3).out((lba & 0xFF000000) >> 24); m_io_group.io_base().offset(ATA_REG_LBA4).out((lba & 0xFF00000000ull) >> 32); m_io_group.io_base().offset(ATA_REG_LBA5).out((lba & 0xFF0000000000ull) >> 40); } m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out(block_count); m_io_group.io_base().offset(ATA_REG_LBA0).out((lba & 0x000000FF) >> 0); m_io_group.io_base().offset(ATA_REG_LBA1).out((lba & 0x0000FF00) >> 8); m_io_group.io_base().offset(ATA_REG_LBA2).out((lba & 0x00FF0000) >> 16); for (;;) { auto status = m_io_group.control_base().in(); if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY)) break; } send_ata_io_command(lba_mode, direction); enable_irq(); } void IDEChannel::send_ata_io_command(LBAMode lba_mode, Direction direction) const { if (lba_mode != LBAMode::FortyEightBit) { m_io_group.io_base().offset(ATA_REG_COMMAND).out(direction == Direction::Read ? ATA_CMD_READ_PIO : ATA_CMD_WRITE_PIO); } else { m_io_group.io_base().offset(ATA_REG_COMMAND).out(direction == Direction::Read ? ATA_CMD_READ_PIO_EXT : ATA_CMD_WRITE_PIO_EXT); } } bool IDEChannel::ata_do_read_sector() { VERIFY(m_lock.is_locked()); VERIFY(m_request_lock.is_locked()); VERIFY(!m_current_request.is_null()); dbgln_if(PATA_DEBUG, "IDEChannel::ata_do_read_sector"); auto& request = *m_current_request; auto out_buffer = request.buffer().offset(m_current_request_block_index * 512); auto result = request.write_to_buffer_buffered<512>(out_buffer, 512, [&](Bytes bytes) { for (size_t i = 0; i < bytes.size(); i += sizeof(u16)) *(u16*)bytes.offset_pointer(i) = IO::in16(m_io_group.io_base().offset(ATA_REG_DATA).get()); return bytes.size(); }); if (result.is_error()) { // TODO: Do we need to abort the PATA read if this wasn't the last block? complete_current_request(AsyncDeviceRequest::MemoryFault); return false; } return true; } // FIXME: This doesn't quite work and locks up reading LBA 3. void IDEChannel::ata_read_sectors(bool slave_request, u16 capabilities) { VERIFY(m_lock.is_locked()); VERIFY(!m_current_request.is_null()); VERIFY(m_current_request->block_count() <= 256); SpinlockLocker m_lock(m_request_lock); dbgln_if(PATA_DEBUG, "IDEChannel::ata_read_sectors"); dbgln_if(PATA_DEBUG, "IDEChannel: Reading {} sector(s) @ LBA {}", m_current_request->block_count(), m_current_request->block_index()); ata_access(Direction::Read, slave_request, m_current_request->block_index(), m_current_request->block_count(), capabilities); } void IDEChannel::ata_do_write_sector() { VERIFY(m_lock.is_locked()); VERIFY(m_request_lock.is_locked()); VERIFY(!m_current_request.is_null()); auto& request = *m_current_request; io_delay(); while ((m_io_group.control_base().in() & ATA_SR_BSY) || !(m_io_group.control_base().in() & ATA_SR_DRQ)) ; u8 status = m_io_group.control_base().in(); VERIFY(status & ATA_SR_DRQ); auto in_buffer = request.buffer().offset(m_current_request_block_index * 512); dbgln_if(PATA_DEBUG, "IDEChannel: Writing 512 bytes (part {}) (status={:#02x})...", m_current_request_block_index, status); auto result = request.read_from_buffer_buffered<512>(in_buffer, 512, [&](ReadonlyBytes readonly_bytes) { for (size_t i = 0; i < readonly_bytes.size(); i += sizeof(u16)) IO::out16(m_io_group.io_base().offset(ATA_REG_DATA).get(), *(const u16*)readonly_bytes.offset(i)); return readonly_bytes.size(); }); if (result.is_error()) complete_current_request(AsyncDeviceRequest::MemoryFault); } // FIXME: I'm assuming this doesn't work based on the fact PIO read doesn't work. void IDEChannel::ata_write_sectors(bool slave_request, u16 capabilities) { VERIFY(m_lock.is_locked()); VERIFY(!m_current_request.is_null()); VERIFY(m_current_request->block_count() <= 256); SpinlockLocker m_lock(m_request_lock); dbgln_if(PATA_DEBUG, "IDEChannel: Writing {} sector(s) @ LBA {}", m_current_request->block_count(), m_current_request->block_index()); ata_access(Direction::Write, slave_request, m_current_request->block_index(), m_current_request->block_count(), capabilities); ata_do_write_sector(); } }