/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2020, Peter Elliott * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include namespace Kernel { static AK::Singleton s_the; static Atomic s_next_random_value = 1; KernelRng& KernelRng::the() { return *s_the; } UNMAP_AFTER_INIT KernelRng::KernelRng() { bool supports_rdseed = Processor::current().has_feature(CPUFeature::RDSEED); bool supports_rdrand = Processor::current().has_feature(CPUFeature::RDRAND); if (supports_rdseed || supports_rdrand) { dmesgln("KernelRng: Using RDSEED or RDRAND as entropy source"); for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) { u32 value = 0; if (supports_rdseed) { asm volatile( "1:\n" "rdseed %0\n" "jnc 1b\n" : "=r"(value)); } else { asm volatile( "1:\n" "rdrand %0\n" "jnc 1b\n" : "=r"(value)); } this->resource().add_random_event(value, i % 32); } } else if (TimeManagement::the().can_query_precise_time()) { // Add HPET as entropy source if we don't have anything better. dmesgln("KernelRng: Using HPET as entropy source"); for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) { u64 hpet_time = HPET::the().read_main_counter_unsafe(); this->resource().add_random_event(hpet_time, i % 32); } } else { // Fallback to RTC dmesgln("KernelRng: Using RTC as entropy source (bad!)"); auto current_time = static_cast(RTC::now()); for (size_t i = 0; i < resource().pool_count * resource().reseed_threshold; ++i) { this->resource().add_random_event(current_time, i % 32); current_time *= 0x574au; current_time += 0x40b2u; } } } void KernelRng::wait_for_entropy() { ScopedSpinLock lock(get_lock()); if (!resource().is_ready()) { dbgln("Entropy starvation..."); m_seed_queue.wait_forever("KernelRng"); } } void KernelRng::wake_if_ready() { VERIFY(get_lock().is_locked()); if (resource().is_ready()) { m_seed_queue.wake_all(); } } size_t EntropySource::next_source { static_cast(EntropySource::Static::MaxHardcodedSourceIndex) }; static void do_get_fast_random_bytes(u8* buffer, size_t buffer_size) { union { u8 bytes[4]; u32 value; } u; size_t offset = 4; for (size_t i = 0; i < buffer_size; ++i) { if (offset >= 4) { auto current_next = s_next_random_value.load(); for (;;) { auto new_next = current_next * 1103515245 + 12345; if (s_next_random_value.compare_exchange_strong(current_next, new_next)) { u.value = new_next; break; } } offset = 0; } buffer[i] = u.bytes[offset++]; } } bool get_good_random_bytes(u8* buffer, size_t buffer_size, bool allow_wait, bool fallback_to_fast) { bool result = false; auto& kernel_rng = KernelRng::the(); // FIXME: What if interrupts are disabled because we're in an interrupt? bool can_wait = are_interrupts_enabled(); if (!can_wait && allow_wait) { // If we can't wait but the caller would be ok with it, then we // need to definitely fallback to *something*, even if it's less // secure... fallback_to_fast = true; } if (can_wait && allow_wait) { for (;;) { { Locker locker(KernelRng::the().lock()); if (kernel_rng.resource().get_random_bytes(buffer, buffer_size)) { result = true; break; } } kernel_rng.wait_for_entropy(); } } else { // We can't wait/block here, or we are not allowed to block/wait if (kernel_rng.resource().get_random_bytes(buffer, buffer_size)) { result = true; } else if (fallback_to_fast) { // If interrupts are disabled do_get_fast_random_bytes(buffer, buffer_size); result = true; } } // NOTE: The only case where this function should ever return false and // not actually return random data is if fallback_to_fast == false and // allow_wait == false and interrupts are enabled! VERIFY(result || !fallback_to_fast); return result; } void get_fast_random_bytes(u8* buffer, size_t buffer_size) { // Try to get good randomness, but don't block if we can't right now // and allow falling back to fast randomness auto result = get_good_random_bytes(buffer, buffer_size, false, true); VERIFY(result); } }