/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern u8* start_of_kernel_image; extern u8* end_of_kernel_image; extern FlatPtr start_of_kernel_text; extern FlatPtr start_of_kernel_data; extern FlatPtr end_of_kernel_bss; extern FlatPtr start_of_ro_after_init; extern FlatPtr end_of_ro_after_init; extern FlatPtr start_of_unmap_after_init; extern FlatPtr end_of_unmap_after_init; extern FlatPtr start_of_kernel_ksyms; extern FlatPtr end_of_kernel_ksyms; extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16]; extern size_t multiboot_copy_boot_modules_count; // Treat the super pages as logically separate from .bss __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB]; namespace Kernel { // NOTE: We can NOT use AK::Singleton for this class, because // MemoryManager::initialize is called *before* global constructors are // run. If we do, then AK::Singleton would get re-initialized, causing // the memory manager to be initialized twice! static MemoryManager* s_the; RecursiveSpinLock s_mm_lock; MemoryManager& MM { return *s_the; } bool MemoryManager::is_initialized() { return s_the != nullptr; } UNMAP_AFTER_INIT MemoryManager::MemoryManager() { s_the = this; ScopedSpinLock lock(s_mm_lock); parse_memory_map(); write_cr3(kernel_page_directory().cr3()); protect_kernel_image(); // We're temporarily "committing" to two pages that we need to allocate below if (!commit_user_physical_pages(2)) VERIFY_NOT_REACHED(); m_shared_zero_page = allocate_committed_user_physical_page(); // We're wasting a page here, we just need a special tag (physical // address) so that we know when we need to lazily allocate a page // that we should be drawing this page from the committed pool rather // than potentially failing if no pages are available anymore. // By using a tag we don't have to query the VMObject for every page // whether it was committed or not m_lazy_committed_page = allocate_committed_user_physical_page(); } UNMAP_AFTER_INIT MemoryManager::~MemoryManager() { } UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image() { ScopedSpinLock page_lock(kernel_page_directory().get_lock()); // Disable writing to the kernel text and rodata segments. for (auto i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_writable(false); } if (Processor::current().has_feature(CPUFeature::NX)) { // Disable execution of the kernel data, bss and heap segments. for (auto i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_execute_disabled(true); } } } UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory() { ScopedSpinLock mm_lock(s_mm_lock); ScopedSpinLock page_lock(kernel_page_directory().get_lock()); // Disable writing to the .ro_after_init section for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_writable(false); flush_tlb(&kernel_page_directory(), VirtualAddress(i)); } } void MemoryManager::unmap_text_after_init() { ScopedSpinLock mm_lock(s_mm_lock); ScopedSpinLock page_lock(kernel_page_directory().get_lock()); auto start = page_round_down((FlatPtr)&start_of_unmap_after_init); auto end = page_round_up((FlatPtr)&end_of_unmap_after_init); // Unmap the entire .unmap_after_init section for (auto i = start; i < end; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.clear(); flush_tlb(&kernel_page_directory(), VirtualAddress(i)); } dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB); } void MemoryManager::unmap_ksyms_after_init() { ScopedSpinLock mm_lock(s_mm_lock); ScopedSpinLock page_lock(kernel_page_directory().get_lock()); auto start = page_round_down((FlatPtr)&start_of_kernel_ksyms); auto end = page_round_up((FlatPtr)&end_of_kernel_ksyms); // Unmap the entire .ksyms section for (auto i = start; i < end; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.clear(); flush_tlb(&kernel_page_directory(), VirtualAddress(i)); } dmesgln("Unmapped {} KiB of kernel symbols after init! :^)", (end - start) / KiB); } UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges() { VERIFY(!m_physical_memory_ranges.is_empty()); ContiguousReservedMemoryRange range; for (auto& current_range : m_physical_memory_ranges) { if (current_range.type != PhysicalMemoryRangeType::Reserved) { if (range.start.is_null()) continue; m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() }); range.start.set((FlatPtr) nullptr); continue; } if (!range.start.is_null()) { continue; } range.start = current_range.start; } if (m_physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved) return; if (range.start.is_null()) return; m_reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, m_physical_memory_ranges.last().start.get() + m_physical_memory_ranges.last().length - range.start.get() }); } bool MemoryManager::is_allowed_to_mmap_to_userspace(PhysicalAddress start_address, Range const& range) const { VERIFY(!m_reserved_memory_ranges.is_empty()); for (auto& current_range : m_reserved_memory_ranges) { if (!(current_range.start <= start_address)) continue; if (!(current_range.start.offset(current_range.length) > start_address)) continue; if (current_range.length < range.size()) return false; return true; } return false; } UNMAP_AFTER_INIT void MemoryManager::parse_memory_map() { // Register used memory regions that we know of. m_used_memory_ranges.ensure_capacity(4); m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) }); m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(&start_of_kernel_image))), PhysicalAddress(page_round_up(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)))) }); if (multiboot_info_ptr->flags & 0x4) { auto* bootmods_start = multiboot_copy_boot_modules_array; auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count; for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) { m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) }); } } auto* mmap_begin = reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->mmap_addr)); auto* mmap_end = reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->mmap_addr) + multiboot_info_ptr->mmap_length); struct ContiguousPhysicalRange { PhysicalAddress lower; PhysicalAddress upper; }; Vector contiguous_physical_ranges; for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) { dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", mmap->addr, mmap->len, mmap->type); auto start_address = PhysicalAddress(mmap->addr); auto length = mmap->len; switch (mmap->type) { case (MULTIBOOT_MEMORY_AVAILABLE): m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length }); break; case (MULTIBOOT_MEMORY_RESERVED): m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length }); break; case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE): m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length }); break; case (MULTIBOOT_MEMORY_NVS): m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length }); break; case (MULTIBOOT_MEMORY_BADRAM): dmesgln("MM: Warning, detected bad memory range!"); m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length }); break; default: dbgln("MM: Unknown range!"); m_physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length }); break; } if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue; // Fix up unaligned memory regions. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE; if (diff != 0) { dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", mmap->addr, diff); diff = PAGE_SIZE - diff; mmap->addr += diff; mmap->len -= diff; } if ((mmap->len % PAGE_SIZE) != 0) { dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", mmap->len, mmap->len % PAGE_SIZE); mmap->len -= mmap->len % PAGE_SIZE; } if (mmap->len < PAGE_SIZE) { dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, mmap->len); continue; } for (PhysicalSize page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) { auto addr = PhysicalAddress(page_base); // Skip used memory ranges. bool should_skip = false; for (auto& used_range : m_used_memory_ranges) { if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) { should_skip = true; break; } } if (should_skip) continue; if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) { contiguous_physical_ranges.append(ContiguousPhysicalRange { .lower = addr, .upper = addr, }); } else { contiguous_physical_ranges.last().upper = addr; } } } for (auto& range : contiguous_physical_ranges) { m_user_physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull()); } // Append statically-allocated super physical physical_region. m_super_physical_regions.append(PhysicalRegion::try_create( PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))), PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages))))) .release_nonnull()); for (auto& region : m_super_physical_regions) m_system_memory_info.super_physical_pages += region.size(); for (auto& region : m_user_physical_regions) m_system_memory_info.user_physical_pages += region.size(); register_reserved_ranges(); for (auto& range : m_reserved_memory_ranges) { dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length); } initialize_physical_pages(); VERIFY(m_system_memory_info.super_physical_pages > 0); VERIFY(m_system_memory_info.user_physical_pages > 0); // We start out with no committed pages m_system_memory_info.user_physical_pages_uncommitted = m_system_memory_info.user_physical_pages; for (auto& used_range : m_used_memory_ranges) { dmesgln("MM: {} range @ {} - {} (size 0x{:x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr()); } for (auto& region : m_super_physical_regions) { dmesgln("MM: Super physical region: {} - {} (size 0x{:x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size()); region.initialize_zones(); } for (auto& region : m_user_physical_regions) { dmesgln("MM: User physical region: {} - {} (size 0x{:x})", region.lower(), region.upper().offset(-1), PAGE_SIZE * region.size()); region.initialize_zones(); } } extern "C" PageDirectoryEntry boot_pd3[1024]; UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages() { // We assume that the physical page range is contiguous and doesn't contain huge gaps! PhysicalAddress highest_physical_address; for (auto& range : m_used_memory_ranges) { if (range.end.get() > highest_physical_address.get()) highest_physical_address = range.end; } for (auto& region : m_physical_memory_ranges) { auto range_end = PhysicalAddress(region.start).offset(region.length); if (range_end.get() > highest_physical_address.get()) highest_physical_address = range_end; } // Calculate how many total physical pages the array will have m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1; VERIFY(m_physical_page_entries_count != 0); VERIFY(!Checked::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry))); // Calculate how many bytes the array will consume auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry); auto physical_page_array_pages = page_round_up(physical_page_array_size) / PAGE_SIZE; VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size); // Calculate how many page tables we will need to be able to map them all auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512; auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count; // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it PhysicalRegion* found_region { nullptr }; Optional found_region_index; for (size_t i = 0; i < m_user_physical_regions.size(); ++i) { auto& region = m_user_physical_regions[i]; if (region.size() >= physical_page_array_pages_and_page_tables_count) { found_region = ®ion; found_region_index = i; break; } } if (!found_region) { dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count); VERIFY_NOT_REACHED(); } VERIFY(m_system_memory_info.user_physical_pages >= physical_page_array_pages_and_page_tables_count); m_system_memory_info.user_physical_pages -= physical_page_array_pages_and_page_tables_count; if (found_region->size() == physical_page_array_pages_and_page_tables_count) { // We're stealing the entire region m_physical_pages_region = m_user_physical_regions.take(*found_region_index); } else { m_physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count); } m_used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, m_physical_pages_region->lower(), m_physical_pages_region->upper() }); // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators! m_kernel_page_directory = PageDirectory::create_kernel_page_directory(); // Allocate a virtual address range for our array auto range = m_kernel_page_directory->range_allocator().allocate_anywhere(physical_page_array_pages * PAGE_SIZE); if (!range.has_value()) { dmesgln("MM: Could not allocate {} bytes to map physical page array!", physical_page_array_pages * PAGE_SIZE); VERIFY_NOT_REACHED(); } // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array // try to map the entire region into kernel space so we always have it // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array // mapped yet so we can't create them ScopedSpinLock lock(s_mm_lock); // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array auto page_tables_base = m_physical_pages_region->lower(); auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE); auto physical_page_array_current_page = physical_page_array_base.get(); auto virtual_page_array_base = range.value().base().get(); auto virtual_page_array_current_page = virtual_page_array_base; for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) { auto virtual_page_base_for_this_pt = virtual_page_array_current_page; auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE); auto* pt = reinterpret_cast(quickmap_page(pt_paddr)); __builtin_memset(pt, 0, PAGE_SIZE); for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) { auto& pte = pt[pte_index]; pte.set_physical_page_base(physical_page_array_current_page); pte.set_user_allowed(false); pte.set_writable(true); if (Processor::current().has_feature(CPUFeature::NX)) pte.set_execute_disabled(false); pte.set_global(true); pte.set_present(true); physical_page_array_current_page += PAGE_SIZE; virtual_page_array_current_page += PAGE_SIZE; } unquickmap_page(); // Hook the page table into the kernel page directory PhysicalAddress boot_pd3_paddr(virtual_to_low_physical((FlatPtr)boot_pd3)); u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff; auto* pd = reinterpret_cast(quickmap_page(boot_pd3_paddr)); PageDirectoryEntry& pde = pd[page_directory_index]; VERIFY(!pde.is_present()); // Nothing should be using this PD yet // We can't use ensure_pte quite yet! pde.set_page_table_base(pt_paddr.get()); pde.set_user_allowed(false); pde.set_present(true); pde.set_writable(true); pde.set_global(true); unquickmap_page(); flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt)); } // We now have the entire PhysicalPageEntry array mapped! m_physical_page_entries = (PhysicalPageEntry*)range.value().base().get(); for (size_t i = 0; i < m_physical_page_entries_count; i++) new (&m_physical_page_entries[i]) PageTableEntry(); // Now we should be able to allocate PhysicalPage instances, // so finish setting up the kernel page directory m_kernel_page_directory->allocate_kernel_directory(); // Now create legit PhysicalPage objects for the page tables we created, so that // we can put them into kernel_page_directory().m_page_tables auto& kernel_page_tables = kernel_page_directory().m_page_tables; virtual_page_array_current_page = virtual_page_array_base; for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) { VERIFY(virtual_page_array_current_page <= range.value().end().get()); auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE); auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get()); auto& physical_page_entry = m_physical_page_entries[physical_page_index]; auto physical_page = adopt_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No)); auto result = kernel_page_tables.set(virtual_page_array_current_page & ~0x1fffff, move(physical_page)); VERIFY(result == AK::HashSetResult::InsertedNewEntry); virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE; } dmesgln("MM: Physical page entries: {}", range.value()); } PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address) { VERIFY(m_physical_page_entries); auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get()); VERIFY(physical_page_entry_index < m_physical_page_entries_count); return m_physical_page_entries[physical_page_entry_index]; } PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page) { PhysicalPageEntry const& physical_page_entry = *reinterpret_cast((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page)); VERIFY(m_physical_page_entries); size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries; VERIFY(physical_page_entry_index < m_physical_page_entries_count); return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE); } PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(s_mm_lock.own_lock()); VERIFY(page_directory.get_lock().own_lock()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(const_cast(page_directory), page_directory_table_index); PageDirectoryEntry const& pde = pd[page_directory_index]; if (!pde.is_present()) return nullptr; return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index]; } PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(s_mm_lock.own_lock()); VERIFY(page_directory.get_lock().own_lock()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(page_directory, page_directory_table_index); PageDirectoryEntry& pde = pd[page_directory_index]; if (!pde.is_present()) { bool did_purge = false; auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge); if (!page_table) { dbgln("MM: Unable to allocate page table to map {}", vaddr); return nullptr; } if (did_purge) { // If any memory had to be purged, ensure_pte may have been called as part // of the purging process. So we need to re-map the pd in this case to ensure // we're writing to the correct underlying physical page pd = quickmap_pd(page_directory, page_directory_table_index); VERIFY(&pde == &pd[page_directory_index]); // Sanity check VERIFY(!pde.is_present()); // Should have not changed } pde.set_page_table_base(page_table->paddr().get()); pde.set_user_allowed(true); pde.set_present(true); pde.set_writable(true); pde.set_global(&page_directory == m_kernel_page_directory.ptr()); // Use page_directory_table_index and page_directory_index as key // This allows us to release the page table entry when no longer needed auto result = page_directory.m_page_tables.set(vaddr.get() & ~(FlatPtr)0x1fffff, move(page_table)); // If you're hitting this VERIFY on x86_64 chances are a 64-bit pointer was truncated somewhere VERIFY(result == AK::HashSetResult::InsertedNewEntry); } return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index]; } void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(s_mm_lock.own_lock()); VERIFY(page_directory.get_lock().own_lock()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(page_directory, page_directory_table_index); PageDirectoryEntry& pde = pd[page_directory_index]; if (pde.is_present()) { auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base())); auto& pte = page_table[page_table_index]; pte.clear(); if (is_last_release || page_table_index == 0x1ff) { // If this is the last PTE in a region or the last PTE in a page table then // check if we can also release the page table bool all_clear = true; for (u32 i = 0; i <= 0x1ff; i++) { if (!page_table[i].is_null()) { all_clear = false; break; } } if (all_clear) { pde.clear(); auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff); VERIFY(result); } } } } UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu) { auto mm_data = new MemoryManagerData; Processor::current().set_mm_data(*mm_data); if (cpu == 0) { new MemoryManager; kmalloc_enable_expand(); } } Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); for (auto& region : MM.m_kernel_regions) { if (region.contains(vaddr)) return ®ion; } return nullptr; } Region* MemoryManager::find_user_region_from_vaddr(Space& space, VirtualAddress vaddr) { ScopedSpinLock lock(space.get_lock()); return space.find_region_containing({ vaddr, 1 }); } Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); if (auto* region = kernel_region_from_vaddr(vaddr)) return region; auto page_directory = PageDirectory::find_by_cr3(read_cr3()); if (!page_directory) return nullptr; VERIFY(page_directory->space()); return find_user_region_from_vaddr(*page_directory->space(), vaddr); } PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault) { VERIFY_INTERRUPTS_DISABLED(); ScopedSpinLock lock(s_mm_lock); if (Processor::current().in_irq()) { dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}", Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq()); dump_kernel_regions(); return PageFaultResponse::ShouldCrash; } dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr()); auto* region = find_region_from_vaddr(fault.vaddr()); if (!region) { return PageFaultResponse::ShouldCrash; } return region->handle_fault(fault, lock); } OwnPtr MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; auto vmobject = ContiguousVMObject::try_create_with_size(size); if (!vmobject) { kernel_page_directory().range_allocator().deallocate(range.value()); return {}; } return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, cacheable); } OwnPtr MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); auto vm_object = AnonymousVMObject::try_create_with_size(size, strategy); if (!vm_object) return {}; ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; return allocate_kernel_region_with_vmobject(range.value(), vm_object.release_nonnull(), name, access, cacheable); } OwnPtr MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size); if (!vm_object) return {}; VERIFY(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable); } OwnPtr MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { auto vm_object = AnonymousVMObject::try_create_for_physical_range(paddr, size); if (!vm_object) return {}; VERIFY(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size); if (!range.has_value()) return {}; return allocate_kernel_region_with_vmobject(range.value(), *vm_object, name, access, cacheable); } OwnPtr MemoryManager::allocate_kernel_region_with_vmobject(Range const& range, VMObject& vmobject, StringView name, Region::Access access, Region::Cacheable cacheable) { ScopedSpinLock lock(s_mm_lock); auto region = Region::try_create_kernel_only(range, vmobject, 0, KString::try_create(name), access, cacheable); if (region) region->map(kernel_page_directory()); return region; } OwnPtr MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, cacheable); } bool MemoryManager::commit_user_physical_pages(size_t page_count) { VERIFY(page_count > 0); ScopedSpinLock lock(s_mm_lock); if (m_system_memory_info.user_physical_pages_uncommitted < page_count) return false; m_system_memory_info.user_physical_pages_uncommitted -= page_count; m_system_memory_info.user_physical_pages_committed += page_count; return true; } void MemoryManager::uncommit_user_physical_pages(size_t page_count) { VERIFY(page_count > 0); ScopedSpinLock lock(s_mm_lock); VERIFY(m_system_memory_info.user_physical_pages_committed >= page_count); m_system_memory_info.user_physical_pages_uncommitted += page_count; m_system_memory_info.user_physical_pages_committed -= page_count; } void MemoryManager::deallocate_physical_page(PhysicalAddress paddr) { ScopedSpinLock lock(s_mm_lock); // Are we returning a user page? for (auto& region : m_user_physical_regions) { if (!region.contains(paddr)) continue; region.return_page(paddr); --m_system_memory_info.user_physical_pages_used; // Always return pages to the uncommitted pool. Pages that were // committed and allocated are only freed upon request. Once // returned there is no guarantee being able to get them back. ++m_system_memory_info.user_physical_pages_uncommitted; return; } // If it's not a user page, it should be a supervisor page. for (auto& region : m_super_physical_regions) { if (!region.contains(paddr)) { dbgln("MM: deallocate_supervisor_physical_page: {} not in {} - {}", paddr, region.lower(), region.upper()); continue; } region.return_page(paddr); --m_system_memory_info.super_physical_pages_used; return; } PANIC("MM: deallocate_user_physical_page couldn't figure out region for page @ {}", paddr); } RefPtr MemoryManager::find_free_user_physical_page(bool committed) { VERIFY(s_mm_lock.is_locked()); RefPtr page; if (committed) { // Draw from the committed pages pool. We should always have these pages available VERIFY(m_system_memory_info.user_physical_pages_committed > 0); m_system_memory_info.user_physical_pages_committed--; } else { // We need to make sure we don't touch pages that we have committed to if (m_system_memory_info.user_physical_pages_uncommitted == 0) return {}; m_system_memory_info.user_physical_pages_uncommitted--; } for (auto& region : m_user_physical_regions) { page = region.take_free_page(); if (!page.is_null()) { ++m_system_memory_info.user_physical_pages_used; break; } } VERIFY(!committed || !page.is_null()); return page; } NonnullRefPtr MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill) { ScopedSpinLock lock(s_mm_lock); auto page = find_free_user_physical_page(true); if (should_zero_fill == ShouldZeroFill::Yes) { auto* ptr = quickmap_page(*page); memset(ptr, 0, PAGE_SIZE); unquickmap_page(); } return page.release_nonnull(); } RefPtr MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge) { ScopedSpinLock lock(s_mm_lock); auto page = find_free_user_physical_page(false); bool purged_pages = false; if (!page) { // We didn't have a single free physical page. Let's try to free something up! // First, we look for a purgeable VMObject in the volatile state. for_each_vmobject([&](auto& vmobject) { if (!vmobject.is_anonymous()) return IterationDecision::Continue; int purged_page_count = static_cast(vmobject).purge_with_interrupts_disabled({}); if (purged_page_count) { dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count); page = find_free_user_physical_page(false); purged_pages = true; VERIFY(page); return IterationDecision::Break; } return IterationDecision::Continue; }); if (!page) { dmesgln("MM: no user physical pages available"); return {}; } } if (should_zero_fill == ShouldZeroFill::Yes) { auto* ptr = quickmap_page(*page); memset(ptr, 0, PAGE_SIZE); unquickmap_page(); } if (did_purge) *did_purge = purged_pages; return page; } NonnullRefPtrVector MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size) { VERIFY(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); size_t count = ceil_div(size, static_cast(PAGE_SIZE)); NonnullRefPtrVector physical_pages; for (auto& region : m_super_physical_regions) { physical_pages = region.take_contiguous_free_pages(count); if (!physical_pages.is_empty()) continue; } if (physical_pages.is_empty()) { if (m_super_physical_regions.is_empty()) { dmesgln("MM: no super physical regions available (?)"); } dmesgln("MM: no super physical pages available"); VERIFY_NOT_REACHED(); return {}; } auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write); fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32)); m_system_memory_info.super_physical_pages_used += count; return physical_pages; } RefPtr MemoryManager::allocate_supervisor_physical_page() { ScopedSpinLock lock(s_mm_lock); RefPtr page; for (auto& region : m_super_physical_regions) { page = region.take_free_page(); if (!page.is_null()) break; } if (!page) { if (m_super_physical_regions.is_empty()) { dmesgln("MM: no super physical regions available (?)"); } dmesgln("MM: no super physical pages available"); VERIFY_NOT_REACHED(); return {}; } fast_u32_fill((u32*)page->paddr().offset(KERNEL_BASE).as_ptr(), 0, PAGE_SIZE / sizeof(u32)); ++m_system_memory_info.super_physical_pages_used; return page; } void MemoryManager::enter_process_paging_scope(Process& process) { enter_space(process.space()); } void MemoryManager::enter_space(Space& space) { auto current_thread = Thread::current(); VERIFY(current_thread != nullptr); ScopedSpinLock lock(s_mm_lock); current_thread->regs().cr3 = space.page_directory().cr3(); write_cr3(space.page_directory().cr3()); } void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count) { Processor::flush_tlb_local(vaddr, page_count); } void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count) { Processor::flush_tlb(page_directory, vaddr, page_count); } extern "C" PageTableEntry boot_pd3_pt1023[1024]; PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index) { VERIFY(s_mm_lock.own_lock()); auto& mm_data = get_data(); auto& pte = boot_pd3_pt1023[(KERNEL_QUICKMAP_PD - KERNEL_PT1024_BASE) / PAGE_SIZE]; auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr(); if (pte.physical_page_base() != pd_paddr.get()) { pte.set_physical_page_base(pd_paddr.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); // Because we must continue to hold the MM lock while we use this // mapping, it is sufficient to only flush on the current CPU. Other // CPUs trying to use this API must wait on the MM lock anyway flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD)); } else { // Even though we don't allow this to be called concurrently, it's // possible that this PD was mapped on a different CPU and we don't // broadcast the flush. If so, we still need to flush the TLB. if (mm_data.m_last_quickmap_pd != pd_paddr) flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PD)); } mm_data.m_last_quickmap_pd = pd_paddr; return (PageDirectoryEntry*)KERNEL_QUICKMAP_PD; } PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr) { VERIFY(s_mm_lock.own_lock()); auto& mm_data = get_data(); auto& pte = boot_pd3_pt1023[(KERNEL_QUICKMAP_PT - KERNEL_PT1024_BASE) / PAGE_SIZE]; if (pte.physical_page_base() != pt_paddr.get()) { pte.set_physical_page_base(pt_paddr.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); // Because we must continue to hold the MM lock while we use this // mapping, it is sufficient to only flush on the current CPU. Other // CPUs trying to use this API must wait on the MM lock anyway flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT)); } else { // Even though we don't allow this to be called concurrently, it's // possible that this PT was mapped on a different CPU and we don't // broadcast the flush. If so, we still need to flush the TLB. if (mm_data.m_last_quickmap_pt != pt_paddr) flush_tlb_local(VirtualAddress(KERNEL_QUICKMAP_PT)); } mm_data.m_last_quickmap_pt = pt_paddr; return (PageTableEntry*)KERNEL_QUICKMAP_PT; } u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address) { VERIFY_INTERRUPTS_DISABLED(); auto& mm_data = get_data(); mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock(); ScopedSpinLock lock(s_mm_lock); VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE); u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE; auto& pte = boot_pd3_pt1023[pte_idx]; if (pte.physical_page_base() != physical_address.get()) { pte.set_physical_page_base(physical_address.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); flush_tlb_local(vaddr); } return vaddr.as_ptr(); } void MemoryManager::unquickmap_page() { VERIFY_INTERRUPTS_DISABLED(); ScopedSpinLock lock(s_mm_lock); auto& mm_data = get_data(); VERIFY(mm_data.m_quickmap_in_use.is_locked()); VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::id() * PAGE_SIZE); u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE; auto& pte = boot_pd3_pt1023[pte_idx]; pte.clear(); flush_tlb_local(vaddr); mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags); } bool MemoryManager::validate_user_stack(Process const& process, VirtualAddress vaddr) const { if (!is_user_address(vaddr)) return false; ScopedSpinLock lock(s_mm_lock); auto* region = find_user_region_from_vaddr(const_cast(process).space(), vaddr); return region && region->is_user() && region->is_stack(); } void MemoryManager::register_vmobject(VMObject& vmobject) { ScopedSpinLock lock(s_mm_lock); m_vmobjects.append(vmobject); } void MemoryManager::unregister_vmobject(VMObject& vmobject) { ScopedSpinLock lock(s_mm_lock); m_vmobjects.remove(vmobject); } void MemoryManager::register_region(Region& region) { ScopedSpinLock lock(s_mm_lock); if (region.is_kernel()) m_kernel_regions.append(region); else m_user_regions.append(region); } void MemoryManager::unregister_region(Region& region) { ScopedSpinLock lock(s_mm_lock); if (region.is_kernel()) m_kernel_regions.remove(region); else m_user_regions.remove(region); } void MemoryManager::dump_kernel_regions() { dbgln("Kernel regions:"); dbgln("BEGIN END SIZE ACCESS NAME"); ScopedSpinLock lock(s_mm_lock); for (auto& region : m_kernel_regions) { dbgln("{:08x} -- {:08x} {:08x} {:c}{:c}{:c}{:c}{:c}{:c} {}", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(), region.is_readable() ? 'R' : ' ', region.is_writable() ? 'W' : ' ', region.is_executable() ? 'X' : ' ', region.is_shared() ? 'S' : ' ', region.is_stack() ? 'T' : ' ', region.is_syscall_region() ? 'C' : ' ', region.name()); } } void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable) { ScopedSpinLock lock(s_mm_lock); ScopedSpinLock page_lock(kernel_page_directory().get_lock()); auto* pte = ensure_pte(kernel_page_directory(), vaddr); VERIFY(pte); if (pte->is_writable() == writable) return; pte->set_writable(writable); flush_tlb(&kernel_page_directory(), vaddr); } }