#include "Scheduler.h" #include "Process.h" #include "system.h" //#define LOG_EVERY_CONTEXT_SWITCH //#define SCHEDULER_DEBUG static const dword time_slice = 5; // *10 = 50ms Process* current; static Process* s_colonel_process; bool Scheduler::pick_next() { ASSERT_INTERRUPTS_DISABLED(); if (!current) { // XXX: The first ever context_switch() goes to the idle process. // This to setup a reliable place we can return to. return context_switch(*s_colonel_process); } // Check and unblock processes whose wait conditions have been met. Process::for_each([] (auto& process) { if (process.state() == Process::BlockedSleep) { if (process.wakeupTime() <= system.uptime) process.unblock(); return true; } if (process.state() == Process::BlockedWait) { auto* waitee = Process::from_pid(process.waitee()); if (!waitee) { kprintf("waitee %u of %s(%u) reaped before I could wait?\n", process.waitee(), process.name().characters(), process.pid()); ASSERT_NOT_REACHED(); } if (waitee->state() == Process::Dead) { process.m_waitee_status = (waitee->m_termination_status << 8) | waitee->m_termination_signal; process.unblock(); waitee->set_state(Process::Forgiven); } return true; } if (process.state() == Process::BlockedRead) { ASSERT(process.m_fdBlockedOnRead != -1); // FIXME: Block until the amount of data wanted is available. if (process.m_file_descriptors[process.m_fdBlockedOnRead]->hasDataAvailableForRead()) process.unblock(); return true; } // Forgive dead orphans. if (process.state() == Process::Dead) { if (!Process::from_pid(process.ppid())) process.set_state(Process::Forgiven); } // Release the forgiven. Process::for_each_in_state(Process::Forgiven, [] (auto& process) { g_processes->remove(&process); g_dead_processes->append(&process); return true; }); return true; }); // Dispatch any pending signals. // FIXME: Do we really need this to be a separate pass over the process list? Process::for_each_not_in_state(Process::Dead, [] (auto& process) { if (!process.has_unmasked_pending_signals()) return true; // We know how to interrupt blocked processes, but if they are just executing // at some random point in the kernel, let them continue. They'll be in userspace // sooner or later and we can deliver the signal then. // FIXME: Maybe we could check when returning from a syscall if there's a pending // signal and dispatch it then and there? Would that be doable without the // syscall effectively being "interrupted" despite having completed? if (process.in_kernel() && !process.is_blocked()) return true; process.dispatch_one_pending_signal(); if (process.is_blocked()) { process.m_was_interrupted_while_blocked = true; process.unblock(); } return true; }); #ifdef SCHEDULER_DEBUG dbgprintf("Scheduler choices:\n"); for (auto* process = g_processes->head(); process; process = process->next()) { //if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep) // continue; dbgprintf("% 12s %s(%u) @ %w:%x\n", toString(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip); } #endif auto* prevHead = g_processes->head(); for (;;) { // Move head to tail. g_processes->append(g_processes->removeHead()); auto* process = g_processes->head(); if (process->state() == Process::Runnable || process->state() == Process::Running) { #ifdef SCHEDULER_DEBUG dbgprintf("switch to %s(%u)\n", process->name().characters(), process->pid()); #endif return context_switch(*process); } if (process == prevHead) { // Back at process_head, nothing wants to run. kprintf("Nothing wants to run!\n"); kprintf("PID OWNER STATE NSCHED NAME\n"); for (auto* process = g_processes->head(); process; process = process->next()) { kprintf("%w %w:%w %b %w %s\n", process->pid(), process->uid(), process->gid(), process->state(), process->timesScheduled(), process->name().characters()); } kprintf("Switch to kernel process @ %w:%x\n", s_colonel_process->tss().cs, s_colonel_process->tss().eip); return context_switch(*s_colonel_process); } } } bool Scheduler::yield() { if (!current) { kprintf("PANIC: sched_yield() with !current"); HANG; } //dbgprintf("%s<%u> yield()\n", current->name().characters(), current->pid()); InterruptDisabler disabler; if (!pick_next()) return 1; //dbgprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters()); switch_now(); return 0; } void Scheduler::pick_next_and_switch_now() { bool someone_wants_to_run = pick_next(); ASSERT(someone_wants_to_run); switch_now(); } void Scheduler::switch_now() { Descriptor& descriptor = getGDTEntry(current->selector()); descriptor.type = 9; flushGDT(); asm("sti\n" "ljmp *(%%eax)\n" ::"a"(¤t->farPtr()) ); } bool Scheduler::context_switch(Process& process) { process.set_ticks_left(time_slice); process.did_schedule(); if (current == &process) return false; if (current) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (current->state() == Process::Running) current->set_state(Process::Runnable); #ifdef LOG_EVERY_CONTEXT_SWITCH dbgprintf("Scheduler: %s(%u) -> %s(%u)\n", current->name().characters(), current->pid(), process.name().characters(), process.pid()); #endif } current = &process; process.set_state(Process::Running); #ifdef COOL_GLOBALS g_cool_globals->current_pid = process.pid(); #endif if (!process.selector()) { process.setSelector(gdt_alloc_entry()); auto& descriptor = getGDTEntry(process.selector()); descriptor.setBase(&process.tss()); descriptor.setLimit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; } auto& descriptor = getGDTEntry(process.selector()); descriptor.type = 11; // Busy TSS flushGDT(); return true; } int sched_yield() { return Scheduler::yield(); } static void redo_colonel_process_tss() { if (!s_colonel_process->selector()) s_colonel_process->setSelector(gdt_alloc_entry()); auto& tssDescriptor = getGDTEntry(s_colonel_process->selector()); tssDescriptor.setBase(&s_colonel_process->tss()); tssDescriptor.setLimit(0xffff); tssDescriptor.dpl = 0; tssDescriptor.segment_present = 1; tssDescriptor.granularity = 1; tssDescriptor.zero = 0; tssDescriptor.operation_size = 1; tssDescriptor.descriptor_type = 0; tssDescriptor.type = 9; flushGDT(); } void Scheduler::prepare_for_iret_to_new_process() { redo_colonel_process_tss(); s_colonel_process->tss().backlink = current->selector(); load_task_register(s_colonel_process->selector()); } void Scheduler::prepare_to_modify_own_tss() { // This ensures that a process modifying its own TSS in order to yield() // and end up somewhere else doesn't just end up right after the yield(). load_task_register(s_colonel_process->selector()); } static void hlt_loop() { for (;;) { asm volatile("hlt"); } } void Scheduler::initialize() { s_colonel_process = Process::create_kernel_process(hlt_loop, "colonel"); current = nullptr; redo_colonel_process_tss(); load_task_register(s_colonel_process->selector()); }