/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Defined in the linker script typedef void (*ctor_func_t)(); extern ctor_func_t start_ctors; extern ctor_func_t end_ctors; extern u32 __stack_chk_guard; u32 __stack_chk_guard; namespace Kernel { [[noreturn]] static void init_stage2(); static void setup_serial_debug(); static void setup_acpi(); static void setup_pci(); static void setup_interrupts(); static void setup_time_management(); VirtualConsole* tty0; // SerenityOS Kernel C++ entry point :^) // // This is where C++ execution begins, after boot.S transfers control here. // // The purpose of init() is to start multi-tasking. It does the bare minimum // amount of work needed to start the scheduler. // // Once multi-tasking is ready, we spawn a new thread that starts in the // init_stage2() function. Initialization continues there. extern "C" [[noreturn]] void init() { setup_serial_debug(); cpu_setup(); kmalloc_init(); slab_alloc_init(); CommandLine::initialize(reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->cmdline))); MemoryManager::initialize(); gdt_init(); idt_init(); // Invoke all static global constructors in the kernel. // Note that we want to do this as early as possible. for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++) (*ctor)(); setup_interrupts(); setup_acpi(); new VFS; new KeyboardDevice; new PS2MouseDevice; new Console; klog() << "Starting SerenityOS..."; __stack_chk_guard = get_good_random(); setup_time_management(); new NullDevice; if (!get_serial_debug()) new SerialDevice(SERIAL_COM1_ADDR, 64); new SerialDevice(SERIAL_COM2_ADDR, 65); new SerialDevice(SERIAL_COM3_ADDR, 66); new SerialDevice(SERIAL_COM4_ADDR, 67); VirtualConsole::initialize(); tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer); new VirtualConsole(1); VirtualConsole::switch_to(0); Process::initialize(); Thread::initialize(); Thread* init_stage2_thread = nullptr; Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2); Scheduler::pick_next(); sti(); Scheduler::idle_loop(); ASSERT_NOT_REACHED(); } void init_stage2() { SyncTask::spawn(); FinalizerTask::spawn(); // Sample test to see if the ACPI parser is working... klog() << "ACPI: HPET table @ " << ACPI::Parser::the().find_table("HPET"); setup_pci(); if (kernel_command_line().contains("text_debug")) { dbg() << "Text mode enabled"; } else { if (multiboot_info_ptr->framebuffer_type == 1 || multiboot_info_ptr->framebuffer_type == 2) { new MBVGADevice( PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)), multiboot_info_ptr->framebuffer_pitch, multiboot_info_ptr->framebuffer_width, multiboot_info_ptr->framebuffer_height); } else { new BXVGADevice; } } LoopbackAdapter::the(); Syscall::initialize(); new ZeroDevice; new FullDevice; new RandomDevice; new PTYMultiplexer; new SB16; VMWareBackdoor::initialize(); bool dmi_unreliable = kernel_command_line().contains("dmi_unreliable"); if (dmi_unreliable) { DMIDecoder::initialize_untrusted(); } else { DMIDecoder::initialize(); } bool text_debug = kernel_command_line().contains("text_debug"); bool force_pio = kernel_command_line().contains("force_pio"); auto root = kernel_command_line().get("root"); if (root.is_empty()) { root = "/dev/hda"; } if (!root.starts_with("/dev/hda")) { klog() << "init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)"; hang(); } auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio); NonnullRefPtr root_dev = *pata0->master_device(); root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda")); if (root.length()) { bool ok; unsigned partition_number = root.to_uint(ok); if (!ok) { klog() << "init_stage2: couldn't parse partition number from root kernel parameter"; hang(); } MBRPartitionTable mbr(root_dev); if (!mbr.initialize()) { klog() << "init_stage2: couldn't read MBR from disk"; hang(); } if (mbr.is_protective_mbr()) { dbg() << "GPT Partitioned Storage Detected!"; GPTPartitionTable gpt(root_dev); if (!gpt.initialize()) { klog() << "init_stage2: couldn't read GPT from disk"; hang(); } auto partition = gpt.partition(partition_number); if (!partition) { klog() << "init_stage2: couldn't get partition " << partition_number; hang(); } root_dev = *partition; } else { dbg() << "MBR Partitioned Storage Detected!"; if (mbr.contains_ebr()) { EBRPartitionTable ebr(root_dev); if (!ebr.initialize()) { klog() << "init_stage2: couldn't read EBR from disk"; hang(); } auto partition = ebr.partition(partition_number); if (!partition) { klog() << "init_stage2: couldn't get partition " << partition_number; hang(); } root_dev = *partition; } else { if (partition_number < 1 || partition_number > 4) { klog() << "init_stage2: invalid partition number " << partition_number << "; expected 1 to 4"; hang(); } auto partition = mbr.partition(partition_number); if (!partition) { klog() << "init_stage2: couldn't get partition " << partition_number; hang(); } root_dev = *partition; } } } auto e2fs = Ext2FS::create(*FileDescription::create(root_dev)); if (!e2fs->initialize()) { klog() << "init_stage2: couldn't open root filesystem"; hang(); } if (!VFS::the().mount_root(e2fs)) { klog() << "VFS::mount_root failed"; hang(); } Process::current->set_root_directory(VFS::the().root_custody()); load_kernel_symbol_table(); int error; // SystemServer will start WindowServer, which will be doing graphics. // From this point on we don't want to touch the VGA text terminal or // accept keyboard input. if (text_debug) { tty0->set_graphical(false); Thread* thread = nullptr; Process::create_user_process(thread, "/bin/Shell", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0); if (error != 0) { klog() << "init_stage2: error spawning Shell: " << error; hang(); } thread->set_priority(THREAD_PRIORITY_HIGH); } else { tty0->set_graphical(true); Thread* thread = nullptr; Process::create_user_process(thread, "/bin/SystemServer", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0); if (error != 0) { klog() << "init_stage2: error spawning SystemServer: " << error; hang(); } thread->set_priority(THREAD_PRIORITY_HIGH); } { Thread* thread = nullptr; Process::create_kernel_process(thread, "NetworkTask", NetworkTask_main); } Process::current->sys$exit(0); ASSERT_NOT_REACHED(); } void setup_serial_debug() { // this is only used one time, directly below here. we can't use this part // of libc at this point in the boot process, or we'd just pull strstr in // from . auto bad_prefix_check = [](const char* str, const char* search) -> bool { while (*search) if (*search++ != *str++) return false; return true; }; // serial_debug will output all the klog() and dbg() data to COM1 at // 8-N-1 57600 baud. this is particularly useful for debugging the boot // process on live hardware. // // note: it must be the first option in the boot cmdline. u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline); if (cmdline && bad_prefix_check(reinterpret_cast(cmdline), "serial_debug")) set_serial_debug(true); } extern "C" { multiboot_info_t* multiboot_info_ptr; } // Define some Itanium C++ ABI methods to stop the linker from complaining // If we actually call these something has gone horribly wrong void* __dso_handle __attribute__((visibility("hidden"))); extern "C" int __cxa_atexit(void (*)(void*), void*, void*) { ASSERT_NOT_REACHED(); return 0; } void setup_acpi() { if (!kernel_command_line().contains("acpi")) { ACPI::DynamicParser::initialize_without_rsdp(); return; } auto acpi = kernel_command_line().get("acpi"); if (acpi == "off") { ACPI::Parser::initialize_limited(); return; } if (acpi == "on") { ACPI::DynamicParser::initialize_without_rsdp(); return; } if (acpi == "limited") { ACPI::StaticParser::initialize_without_rsdp(); return; } klog() << "acpi boot argmuent has an invalid value."; hang(); } void setup_pci() { if (!kernel_command_line().contains("pci_mmio")) { PCI::Initializer::the().test_and_initialize(false); PCI::Initializer::the().dismiss(); return; } auto pci_mmio = kernel_command_line().get("pci_mmio"); if (pci_mmio == "on") { PCI::Initializer::the().test_and_initialize(false); } else if (pci_mmio == "off") { PCI::Initializer::the().test_and_initialize(true); } else { klog() << "pci_mmio boot argmuent has an invalid value."; hang(); } PCI::Initializer::the().dismiss(); } void setup_interrupts() { InterruptManagement::initialize(); if (!kernel_command_line().contains("smp")) { InterruptManagement::the().switch_to_pic_mode(); return; } auto smp = kernel_command_line().get("smp"); if (smp == "off") { InterruptManagement::the().switch_to_pic_mode(); return; } if (smp == "on") { InterruptManagement::the().switch_to_ioapic_mode(); return; } klog() << "smp boot argmuent has an invalid value."; hang(); } void setup_time_management() { if (!kernel_command_line().contains("time")) { TimeManagement::initialize(true); return; } auto time = kernel_command_line().get("time"); if (time == "legacy") { TimeManagement::initialize(false); return; } if (time == "modern") { TimeManagement::initialize(true); return; } kprintf("time boot argmuent has an invalid value.\n"); hang(); } }