#include #include #include #include #include #include #include #include #include #include #include #include #define IPV4_SOCKET_DEBUG Lockable>& IPv4Socket::all_sockets() { static Lockable>* s_table; if (!s_table) s_table = new Lockable>; return *s_table; } Retained IPv4Socket::create(int type, int protocol) { if (type == SOCK_STREAM) return TCPSocket::create(protocol); if (type == SOCK_DGRAM) return UDPSocket::create(protocol); return adopt(*new IPv4Socket(type, protocol)); } IPv4Socket::IPv4Socket(int type, int protocol) : Socket(AF_INET, type, protocol) { kprintf("%s(%u) IPv4Socket{%p} created with type=%u, protocol=%d\n", current->name().characters(), current->pid(), this, type, protocol); LOCKER(all_sockets().lock()); all_sockets().resource().set(this); } IPv4Socket::~IPv4Socket() { LOCKER(all_sockets().lock()); all_sockets().resource().remove(this); } bool IPv4Socket::get_address(sockaddr* address, socklen_t* address_size) { // FIXME: Look into what fallback behavior we should have here. if (*address_size != sizeof(sockaddr_in)) return false; memcpy(address, &m_destination_address, sizeof(sockaddr_in)); *address_size = sizeof(sockaddr_in); return true; } KResult IPv4Socket::bind(const sockaddr* address, socklen_t address_size) { ASSERT(!is_connected()); if (address_size != sizeof(sockaddr_in)) return KResult(-EINVAL); if (address->sa_family != AF_INET) return KResult(-EINVAL); ASSERT_NOT_REACHED(); } KResult IPv4Socket::connect(const sockaddr* address, socklen_t address_size) { ASSERT(!m_bound); if (address_size != sizeof(sockaddr_in)) return KResult(-EINVAL); if (address->sa_family != AF_INET) return KResult(-EINVAL); auto& ia = *(const sockaddr_in*)address; m_destination_address = IPv4Address((const byte*)&ia.sin_addr.s_addr); m_destination_port = ntohs(ia.sin_port); return protocol_connect(); } void IPv4Socket::attach_fd(SocketRole) { ++m_attached_fds; } void IPv4Socket::detach_fd(SocketRole) { --m_attached_fds; } bool IPv4Socket::can_read(SocketRole) const { return m_can_read; } ssize_t IPv4Socket::read(SocketRole, byte*, ssize_t) { ASSERT_NOT_REACHED(); } ssize_t IPv4Socket::write(SocketRole, const byte*, ssize_t) { ASSERT_NOT_REACHED(); } bool IPv4Socket::can_write(SocketRole) const { ASSERT_NOT_REACHED(); } void IPv4Socket::allocate_source_port_if_needed() { if (m_source_port) return; protocol_allocate_source_port(); } ssize_t IPv4Socket::sendto(const void* data, size_t data_length, int flags, const sockaddr* addr, socklen_t addr_length) { (void)flags; if (addr && addr_length != sizeof(sockaddr_in)) return -EINVAL; // FIXME: Find the adapter some better way! auto* adapter = NetworkAdapter::from_ipv4_address(IPv4Address(192, 168, 5, 2)); if (!adapter) { // FIXME: Figure out which error code to return. ASSERT_NOT_REACHED(); } if (addr) { if (addr->sa_family != AF_INET) { kprintf("sendto: Bad address family: %u is not AF_INET!\n", addr->sa_family); return -EAFNOSUPPORT; } auto& ia = *(const sockaddr_in*)addr; m_destination_address = IPv4Address((const byte*)&ia.sin_addr.s_addr); m_destination_port = ntohs(ia.sin_port); } allocate_source_port_if_needed(); kprintf("sendto: destination=%s:%u\n", m_destination_address.to_string().characters(), m_destination_port); if (type() == SOCK_RAW) { adapter->send_ipv4(MACAddress(), m_destination_address, (IPv4Protocol)protocol(), ByteBuffer::copy((const byte*)data, data_length)); return data_length; } return protocol_send(data, data_length); } ssize_t IPv4Socket::recvfrom(void* buffer, size_t buffer_length, int flags, sockaddr* addr, socklen_t* addr_length) { (void)flags; if (addr_length && *addr_length < sizeof(sockaddr_in)) return -EINVAL; #ifdef IPV4_SOCKET_DEBUG kprintf("recvfrom: type=%d, source_port=%u\n", type(), source_port()); #endif ByteBuffer packet_buffer; { LOCKER(lock()); if (!m_receive_queue.is_empty()) { packet_buffer = m_receive_queue.take_first(); m_can_read = !m_receive_queue.is_empty(); } } if (packet_buffer.is_null()) { current->set_blocked_socket(this); load_receive_deadline(); block(Process::BlockedReceive); Scheduler::yield(); LOCKER(lock()); if (!m_can_read) { // Unblocked due to timeout. return -EAGAIN; } ASSERT(m_can_read); ASSERT(!m_receive_queue.is_empty()); packet_buffer = m_receive_queue.take_first(); m_can_read = !m_receive_queue.is_empty(); } ASSERT(!packet_buffer.is_null()); auto& ipv4_packet = *(const IPv4Packet*)(packet_buffer.pointer()); if (addr) { auto& ia = *(sockaddr_in*)addr; memcpy(&ia.sin_addr, &m_destination_address, sizeof(IPv4Address)); ia.sin_family = AF_INET; ASSERT(addr_length); *addr_length = sizeof(sockaddr_in); } if (type() == SOCK_RAW) { ASSERT(buffer_length >= ipv4_packet.payload_size()); memcpy(buffer, ipv4_packet.payload(), ipv4_packet.payload_size()); return ipv4_packet.payload_size(); } return protocol_receive(packet_buffer, buffer, buffer_length, flags, addr, addr_length); } void IPv4Socket::did_receive(ByteBuffer&& packet) { LOCKER(lock()); m_receive_queue.append(move(packet)); m_can_read = true; #ifdef IPV4_SOCKET_DEBUG kprintf("IPv4Socket(%p): did_receive %d bytes, packets in queue: %d\n", this, packet.size(), m_receive_queue.size_slow()); #endif }