/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { MutexProtected>& hostname(); Time kgettimeofday(); #define ENUMERATE_PLEDGE_PROMISES \ __ENUMERATE_PLEDGE_PROMISE(stdio) \ __ENUMERATE_PLEDGE_PROMISE(rpath) \ __ENUMERATE_PLEDGE_PROMISE(wpath) \ __ENUMERATE_PLEDGE_PROMISE(cpath) \ __ENUMERATE_PLEDGE_PROMISE(dpath) \ __ENUMERATE_PLEDGE_PROMISE(inet) \ __ENUMERATE_PLEDGE_PROMISE(id) \ __ENUMERATE_PLEDGE_PROMISE(proc) \ __ENUMERATE_PLEDGE_PROMISE(ptrace) \ __ENUMERATE_PLEDGE_PROMISE(exec) \ __ENUMERATE_PLEDGE_PROMISE(unix) \ __ENUMERATE_PLEDGE_PROMISE(recvfd) \ __ENUMERATE_PLEDGE_PROMISE(sendfd) \ __ENUMERATE_PLEDGE_PROMISE(fattr) \ __ENUMERATE_PLEDGE_PROMISE(tty) \ __ENUMERATE_PLEDGE_PROMISE(chown) \ __ENUMERATE_PLEDGE_PROMISE(thread) \ __ENUMERATE_PLEDGE_PROMISE(video) \ __ENUMERATE_PLEDGE_PROMISE(accept) \ __ENUMERATE_PLEDGE_PROMISE(settime) \ __ENUMERATE_PLEDGE_PROMISE(sigaction) \ __ENUMERATE_PLEDGE_PROMISE(setkeymap) \ __ENUMERATE_PLEDGE_PROMISE(prot_exec) \ __ENUMERATE_PLEDGE_PROMISE(map_fixed) \ __ENUMERATE_PLEDGE_PROMISE(getkeymap) enum class Pledge : u32 { #define __ENUMERATE_PLEDGE_PROMISE(x) x, ENUMERATE_PLEDGE_PROMISES #undef __ENUMERATE_PLEDGE_PROMISE }; enum class VeilState { None, Dropped, Locked, }; using FutexQueues = HashMap>; struct LoadResult; class Process final : public ListedRefCounted , public Weakable { class ProtectedValues { public: ProcessID pid { 0 }; ProcessID ppid { 0 }; SessionID sid { 0 }; UserID euid { 0 }; GroupID egid { 0 }; UserID uid { 0 }; GroupID gid { 0 }; UserID suid { 0 }; GroupID sgid { 0 }; Vector extra_gids; bool dumpable { false }; Atomic has_promises { false }; Atomic promises { 0 }; Atomic has_execpromises { false }; Atomic execpromises { 0 }; mode_t umask { 022 }; VirtualAddress signal_trampoline; Atomic thread_count { 0 }; u8 termination_status { 0 }; u8 termination_signal { 0 }; }; public: AK_MAKE_NONCOPYABLE(Process); AK_MAKE_NONMOVABLE(Process); MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE); friend class Thread; friend class Coredump; // Helper class to temporarily unprotect a process's protected data so you can write to it. class ProtectedDataMutationScope { public: explicit ProtectedDataMutationScope(Process& process) : m_process(process) { m_process.unprotect_data(); } ~ProtectedDataMutationScope() { m_process.protect_data(); } private: Process& m_process; }; enum class State : u8 { Running = 0, Dying, Dead }; public: class ProcessProcFSTraits; inline static Process& current() { auto* current_thread = Processor::current_thread(); VERIFY(current_thread); return current_thread->process(); } inline static bool has_current() { return Processor::current_thread() != nullptr; } template static void kernel_process_trampoline(void* data) { EntryFunction* func = reinterpret_cast(data); (*func)(); delete func; } enum class RegisterProcess { No, Yes }; template static RefPtr create_kernel_process(RefPtr& first_thread, NonnullOwnPtr name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes) { auto* entry_func = new EntryFunction(move(entry)); return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline, entry_func, affinity, do_register); } static RefPtr create_kernel_process(RefPtr& first_thread, NonnullOwnPtr name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes); static ErrorOr> try_create_user_process(RefPtr& first_thread, StringView path, UserID, GroupID, NonnullOwnPtrVector arguments, NonnullOwnPtrVector environment, TTY*); static void register_new(Process&); ~Process(); RefPtr create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true); bool is_profiling() const { return m_profiling; } void set_profiling(bool profiling) { m_profiling = profiling; } bool should_generate_coredump() const { return m_should_generate_coredump; } void set_should_generate_coredump(bool b) { m_should_generate_coredump = b; } bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; } bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; } bool is_stopped() const { return m_is_stopped; } bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); } bool is_kernel_process() const { return m_is_kernel_process; } bool is_user_process() const { return !m_is_kernel_process; } static RefPtr from_pid(ProcessID); static SessionID get_sid_from_pgid(ProcessGroupID pgid); StringView name() const { return m_name->view(); } ProcessID pid() const { return m_protected_values.pid; } SessionID sid() const { return m_protected_values.sid; } bool is_session_leader() const { return sid().value() == pid().value(); } ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; } bool is_group_leader() const { return pgid().value() == pid().value(); } Vector const& extra_gids() const { return m_protected_values.extra_gids; } UserID euid() const { return m_protected_values.euid; } GroupID egid() const { return m_protected_values.egid; } UserID uid() const { return m_protected_values.uid; } GroupID gid() const { return m_protected_values.gid; } UserID suid() const { return m_protected_values.suid; } GroupID sgid() const { return m_protected_values.sgid; } ProcessID ppid() const { return m_protected_values.ppid; } bool is_dumpable() const { return m_protected_values.dumpable; } void set_dumpable(bool); mode_t umask() const { return m_protected_values.umask; } bool in_group(GroupID) const; // Breakable iteration functions template Callback> static void for_each(Callback); template Callback> static void for_each_in_pgrp(ProcessGroupID, Callback); template Callback> void for_each_child(Callback); template Callback> IterationDecision for_each_thread(Callback); template Callback> IterationDecision for_each_thread(Callback callback) const; // Non-breakable iteration functions template Callback> static void for_each(Callback); template Callback> static void for_each_in_pgrp(ProcessGroupID, Callback); template Callback> void for_each_child(Callback); template Callback> IterationDecision for_each_thread(Callback); template Callback> IterationDecision for_each_thread(Callback callback) const; void die(); void finalize(); ThreadTracer* tracer() { return m_tracer.ptr(); } bool is_traced() const { return !!m_tracer; } ErrorOr start_tracing_from(ProcessID tracer); void stop_tracing(); void tracer_trap(Thread&, const RegisterState&); ErrorOr sys$emuctl(); ErrorOr sys$yield(); ErrorOr sys$sync(); ErrorOr sys$beep(); ErrorOr sys$get_process_name(Userspace buffer, size_t buffer_size); ErrorOr sys$set_process_name(Userspace user_name, size_t user_name_length); ErrorOr sys$create_inode_watcher(u32 flags); ErrorOr sys$inode_watcher_add_watch(Userspace user_params); ErrorOr sys$inode_watcher_remove_watch(int fd, int wd); ErrorOr sys$dbgputstr(Userspace, size_t); ErrorOr sys$dump_backtrace(); ErrorOr sys$gettid(); ErrorOr sys$setsid(); ErrorOr sys$getsid(pid_t); ErrorOr sys$setpgid(pid_t pid, pid_t pgid); ErrorOr sys$getpgrp(); ErrorOr sys$getpgid(pid_t); ErrorOr sys$getuid(); ErrorOr sys$getgid(); ErrorOr sys$geteuid(); ErrorOr sys$getegid(); ErrorOr sys$getpid(); ErrorOr sys$getppid(); ErrorOr sys$getresuid(Userspace, Userspace, Userspace); ErrorOr sys$getresgid(Userspace, Userspace, Userspace); ErrorOr sys$umask(mode_t); ErrorOr sys$open(Userspace); ErrorOr sys$close(int fd); ErrorOr sys$read(int fd, Userspace, size_t); ErrorOr sys$pread(int fd, Userspace, size_t, Userspace); ErrorOr sys$readv(int fd, Userspace iov, int iov_count); ErrorOr sys$write(int fd, Userspace, size_t); ErrorOr sys$writev(int fd, Userspace iov, int iov_count); ErrorOr sys$fstat(int fd, Userspace); ErrorOr sys$stat(Userspace); ErrorOr sys$lseek(int fd, Userspace, int whence); ErrorOr sys$ftruncate(int fd, Userspace); ErrorOr sys$kill(pid_t pid_or_pgid, int sig); [[noreturn]] void sys$exit(int status); ErrorOr sys$sigreturn(RegisterState& registers); ErrorOr sys$waitid(Userspace); ErrorOr sys$mmap(Userspace); ErrorOr sys$mremap(Userspace); ErrorOr sys$munmap(Userspace, size_t); ErrorOr sys$set_mmap_name(Userspace); ErrorOr sys$mprotect(Userspace, size_t, int prot); ErrorOr sys$madvise(Userspace, size_t, int advice); ErrorOr sys$msyscall(Userspace); ErrorOr sys$msync(Userspace, size_t, int flags); ErrorOr sys$purge(int mode); ErrorOr sys$poll(Userspace); ErrorOr sys$get_dir_entries(int fd, Userspace, size_t); ErrorOr sys$getcwd(Userspace, size_t); ErrorOr sys$chdir(Userspace, size_t); ErrorOr sys$fchdir(int fd); ErrorOr sys$adjtime(Userspace, Userspace); ErrorOr sys$clock_gettime(clockid_t, Userspace); ErrorOr sys$clock_settime(clockid_t, Userspace); ErrorOr sys$clock_nanosleep(Userspace); ErrorOr sys$gethostname(Userspace, size_t); ErrorOr sys$sethostname(Userspace, size_t); ErrorOr sys$uname(Userspace); ErrorOr sys$readlink(Userspace); ErrorOr sys$ttyname(int fd, Userspace, size_t); ErrorOr sys$ptsname(int fd, Userspace, size_t); ErrorOr sys$fork(RegisterState&); ErrorOr sys$execve(Userspace); ErrorOr sys$dup2(int old_fd, int new_fd); ErrorOr sys$sigaction(int signum, Userspace act, Userspace old_act); ErrorOr sys$sigaltstack(Userspace ss, Userspace old_ss); ErrorOr sys$sigprocmask(int how, Userspace set, Userspace old_set); ErrorOr sys$sigpending(Userspace); ErrorOr sys$sigtimedwait(Userspace, Userspace, Userspace); ErrorOr sys$getgroups(size_t, Userspace); ErrorOr sys$setgroups(size_t, Userspace); ErrorOr sys$pipe(int pipefd[2], int flags); ErrorOr sys$killpg(pid_t pgrp, int sig); ErrorOr sys$seteuid(UserID); ErrorOr sys$setegid(GroupID); ErrorOr sys$setuid(UserID); ErrorOr sys$setgid(GroupID); ErrorOr sys$setreuid(UserID, UserID); ErrorOr sys$setresuid(UserID, UserID, UserID); ErrorOr sys$setresgid(GroupID, GroupID, GroupID); ErrorOr sys$alarm(unsigned seconds); ErrorOr sys$access(Userspace pathname, size_t path_length, int mode); ErrorOr sys$fcntl(int fd, int cmd, u32 extra_arg); ErrorOr sys$ioctl(int fd, unsigned request, FlatPtr arg); ErrorOr sys$mkdir(Userspace pathname, size_t path_length, mode_t mode); ErrorOr sys$times(Userspace); ErrorOr sys$utime(Userspace pathname, size_t path_length, Userspace); ErrorOr sys$link(Userspace); ErrorOr sys$unlink(Userspace pathname, size_t path_length); ErrorOr sys$symlink(Userspace); ErrorOr sys$rmdir(Userspace pathname, size_t path_length); ErrorOr sys$mount(Userspace); ErrorOr sys$umount(Userspace mountpoint, size_t mountpoint_length); ErrorOr sys$chmod(Userspace); ErrorOr sys$fchmod(int fd, mode_t); ErrorOr sys$chown(Userspace); ErrorOr sys$fchown(int fd, UserID, GroupID); ErrorOr sys$fsync(int fd); ErrorOr sys$socket(int domain, int type, int protocol); ErrorOr sys$bind(int sockfd, Userspace addr, socklen_t); ErrorOr sys$listen(int sockfd, int backlog); ErrorOr sys$accept4(Userspace); ErrorOr sys$connect(int sockfd, Userspace, socklen_t); ErrorOr sys$shutdown(int sockfd, int how); ErrorOr sys$sendmsg(int sockfd, Userspace, int flags); ErrorOr sys$recvmsg(int sockfd, Userspace, int flags); ErrorOr sys$getsockopt(Userspace); ErrorOr sys$setsockopt(Userspace); ErrorOr sys$getsockname(Userspace); ErrorOr sys$getpeername(Userspace); ErrorOr sys$socketpair(Userspace); ErrorOr sys$sched_setparam(pid_t pid, Userspace); ErrorOr sys$sched_getparam(pid_t pid, Userspace); ErrorOr sys$create_thread(void* (*)(void*), Userspace); [[noreturn]] void sys$exit_thread(Userspace, Userspace, size_t); ErrorOr sys$join_thread(pid_t tid, Userspace exit_value); ErrorOr sys$detach_thread(pid_t tid); ErrorOr sys$set_thread_name(pid_t tid, Userspace buffer, size_t buffer_size); ErrorOr sys$get_thread_name(pid_t tid, Userspace buffer, size_t buffer_size); ErrorOr sys$kill_thread(pid_t tid, int signal); ErrorOr sys$rename(Userspace); ErrorOr sys$mknod(Userspace); ErrorOr sys$realpath(Userspace); ErrorOr sys$getrandom(Userspace, size_t, unsigned int); ErrorOr sys$getkeymap(Userspace); ErrorOr sys$setkeymap(Userspace); ErrorOr sys$profiling_enable(pid_t, u64); ErrorOr sys$profiling_disable(pid_t); ErrorOr sys$profiling_free_buffer(pid_t); ErrorOr sys$futex(Userspace); ErrorOr sys$pledge(Userspace); ErrorOr sys$unveil(Userspace); ErrorOr sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2); ErrorOr sys$perf_register_string(Userspace, size_t); ErrorOr sys$get_stack_bounds(Userspace stack_base, Userspace stack_size); ErrorOr sys$ptrace(Userspace); ErrorOr sys$sendfd(int sockfd, int fd); ErrorOr sys$recvfd(int sockfd, int options); ErrorOr sys$sysconf(int name); ErrorOr sys$disown(ProcessID); ErrorOr sys$allocate_tls(Userspace initial_data, size_t); ErrorOr sys$prctl(int option, FlatPtr arg1, FlatPtr arg2); ErrorOr sys$set_coredump_metadata(Userspace); ErrorOr sys$anon_create(size_t, int options); ErrorOr sys$statvfs(Userspace user_params); ErrorOr sys$fstatvfs(int fd, statvfs* buf); ErrorOr sys$map_time_page(); template ErrorOr get_sock_or_peer_name(Params const&); static void initialize(); [[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false); [[nodiscard]] siginfo_t wait_info() const; const TTY* tty() const { return m_tty; } void set_tty(TTY*); u32 m_ticks_in_user { 0 }; u32 m_ticks_in_kernel { 0 }; u32 m_ticks_in_user_for_dead_children { 0 }; u32 m_ticks_in_kernel_for_dead_children { 0 }; Custody& current_directory(); Custody* executable() { return m_executable.ptr(); } const Custody* executable() const { return m_executable.ptr(); } static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8; static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8; NonnullOwnPtrVector const& arguments() const { return m_arguments; }; NonnullOwnPtrVector const& environment() const { return m_environment; }; ErrorOr exec(NonnullOwnPtr path, NonnullOwnPtrVector arguments, NonnullOwnPtrVector environment, Thread*& new_main_thread, u32& prev_flags, int recursion_depth = 0); ErrorOr load(NonnullRefPtr main_program_description, RefPtr interpreter_description, const ElfW(Ehdr) & main_program_header); bool is_superuser() const { return euid() == 0; } void terminate_due_to_signal(u8 signal); ErrorOr send_signal(u8 signal, Process* sender); u8 termination_signal() const { return m_protected_values.termination_signal; } u16 thread_count() const { return m_protected_values.thread_count.load(AK::MemoryOrder::memory_order_relaxed); } Mutex& big_lock() { return m_big_lock; } Mutex& ptrace_lock() { return m_ptrace_lock; } bool has_promises() const { return m_protected_values.has_promises; } bool has_promised(Pledge pledge) const { return (m_protected_values.promises & (1U << (u32)pledge)) != 0; } VeilState veil_state() const { return m_veil_state; } const UnveilNode& unveiled_paths() const { return m_unveiled_paths; } bool wait_for_tracer_at_next_execve() const { return m_wait_for_tracer_at_next_execve; } void set_wait_for_tracer_at_next_execve(bool val) { m_wait_for_tracer_at_next_execve = val; } ErrorOr peek_user_data(Span destination, Userspace address); ErrorOr peek_user_data(Userspace address); ErrorOr poke_user_data(Userspace address, FlatPtr data); void disowned_by_waiter(Process& process); void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0); Thread::WaitBlockerSet& wait_blocker_set() { return m_wait_blocker_set; } template void for_each_coredump_property(Callback callback) const { for (auto const& property : m_coredump_properties) { if (property.key && property.value) callback(*property.key, *property.value); } } ErrorOr set_coredump_property(NonnullOwnPtr key, NonnullOwnPtr value); ErrorOr try_set_coredump_property(StringView key, StringView value); const NonnullRefPtrVector& threads_for_coredump(Badge) const { return m_threads_for_coredump; } PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; } PerformanceEventBuffer const* perf_events() const { return m_perf_event_buffer; } Memory::AddressSpace& address_space() { return *m_space; } Memory::AddressSpace const& address_space() const { return *m_space; } VirtualAddress signal_trampoline() const { return m_protected_values.signal_trampoline; } ErrorOr require_promise(Pledge); ErrorOr require_no_promises() const; private: friend class MemoryManager; friend class Scheduler; friend class Region; friend class PerformanceManager; bool add_thread(Thread&); bool remove_thread(Thread&); Process(NonnullOwnPtr name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr cwd, RefPtr executable, TTY* tty, UnveilNode unveil_tree); static ErrorOr> try_create(RefPtr& first_thread, NonnullOwnPtr name, UserID, GroupID, ProcessID ppid, bool is_kernel_process, RefPtr cwd = nullptr, RefPtr executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr); ErrorOr attach_resources(NonnullOwnPtr&&, RefPtr& first_thread, Process* fork_parent); static ProcessID allocate_pid(); void kill_threads_except_self(); void kill_all_threads(); ErrorOr dump_core(); ErrorOr dump_perfcore(); bool create_perf_events_buffer_if_needed(); void delete_perf_events_buffer(); ErrorOr do_exec(NonnullRefPtr main_program_description, NonnullOwnPtrVector arguments, NonnullOwnPtrVector environment, RefPtr interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header); ErrorOr do_write(OpenFileDescription&, const UserOrKernelBuffer&, size_t); ErrorOr do_statvfs(FileSystem const& path, Custody const*, statvfs* buf); ErrorOr> find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size); ErrorOr do_kill(Process&, int signal); ErrorOr do_killpg(ProcessGroupID pgrp, int signal); ErrorOr do_killall(int signal); ErrorOr do_killself(int signal); ErrorOr do_waitid(Variant, NonnullRefPtr> waitee, int options); static ErrorOr> get_syscall_path_argument(Userspace user_path, size_t path_length); static ErrorOr> get_syscall_path_argument(const Syscall::StringArgument&); bool has_tracee_thread(ProcessID tracer_pid); void clear_futex_queues_on_exec(); ErrorOr remap_range_as_stack(FlatPtr address, size_t size); ErrorOr read_impl(int fd, Userspace buffer, size_t size); public: NonnullRefPtr procfs_traits() const { return *m_procfs_traits; } ErrorOr procfs_get_fds_stats(KBufferBuilder& builder) const; ErrorOr procfs_get_perf_events(KBufferBuilder& builder) const; ErrorOr procfs_get_unveil_stats(KBufferBuilder& builder) const; ErrorOr procfs_get_pledge_stats(KBufferBuilder& builder) const; ErrorOr procfs_get_virtual_memory_stats(KBufferBuilder& builder) const; ErrorOr procfs_get_binary_link(KBufferBuilder& builder) const; ErrorOr procfs_get_current_work_directory_link(KBufferBuilder& builder) const; mode_t binary_link_required_mode() const; ErrorOr procfs_get_thread_stack(ThreadID thread_id, KBufferBuilder& builder) const; ErrorOr traverse_stacks_directory(FileSystemID, Function(FileSystem::DirectoryEntryView const&)> callback) const; ErrorOr> lookup_stacks_directory(const ProcFS&, StringView name) const; ErrorOr procfs_get_file_description_link(unsigned fd, KBufferBuilder& builder) const; ErrorOr traverse_file_descriptions_directory(FileSystemID, Function(FileSystem::DirectoryEntryView const&)> callback) const; ErrorOr> lookup_file_descriptions_directory(const ProcFS&, StringView name) const; ErrorOr procfs_get_tty_link(KBufferBuilder& builder) const; private: inline PerformanceEventBuffer* current_perf_events_buffer() { if (g_profiling_all_threads) return g_global_perf_events; if (m_profiling) return m_perf_event_buffer.ptr(); return nullptr; } IntrusiveListNode m_list_node; NonnullOwnPtr m_name; OwnPtr m_space; RefPtr m_pg; AtomicEdgeAction m_protected_data_refs; void protect_data(); void unprotect_data(); OwnPtr m_tracer; public: class OpenFileDescriptionAndFlags { public: bool is_valid() const { return !m_description.is_null(); } bool is_allocated() const { return m_is_allocated; } void allocate() { VERIFY(!m_is_allocated); VERIFY(!is_valid()); m_is_allocated = true; } void deallocate() { VERIFY(m_is_allocated); VERIFY(!is_valid()); m_is_allocated = false; } OpenFileDescription* description() { return m_description; } const OpenFileDescription* description() const { return m_description; } u32 flags() const { return m_flags; } void set_flags(u32 flags) { m_flags = flags; } void clear(); void set(NonnullRefPtr&&, u32 flags = 0); private: RefPtr m_description; bool m_is_allocated { false }; u32 m_flags { 0 }; }; class ScopedDescriptionAllocation; class OpenFileDescriptions { AK_MAKE_NONCOPYABLE(OpenFileDescriptions); AK_MAKE_NONMOVABLE(OpenFileDescriptions); friend class Process; public: OpenFileDescriptions() { } ALWAYS_INLINE const OpenFileDescriptionAndFlags& operator[](size_t i) const { return at(i); } ALWAYS_INLINE OpenFileDescriptionAndFlags& operator[](size_t i) { return at(i); } ErrorOr try_clone(const Kernel::Process::OpenFileDescriptions& other) { TRY(try_resize(other.m_fds_metadatas.size())); for (size_t i = 0; i < other.m_fds_metadatas.size(); ++i) { m_fds_metadatas[i] = other.m_fds_metadatas[i]; } return {}; } const OpenFileDescriptionAndFlags& at(size_t i) const; OpenFileDescriptionAndFlags& at(size_t i); OpenFileDescriptionAndFlags const* get_if_valid(size_t i) const; OpenFileDescriptionAndFlags* get_if_valid(size_t i); void enumerate(Function) const; void change_each(Function); ErrorOr allocate(int first_candidate_fd = 0); size_t open_count() const; ErrorOr try_resize(size_t size) { return m_fds_metadatas.try_resize(size); } static constexpr size_t max_open() { return s_max_open_file_descriptors; } void clear() { m_fds_metadatas.clear(); } ErrorOr> open_file_description(int fd) const; private: static constexpr size_t s_max_open_file_descriptors { FD_SETSIZE }; Vector m_fds_metadatas; }; class ScopedDescriptionAllocation { AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation); public: ScopedDescriptionAllocation() = default; ScopedDescriptionAllocation(int tracked_fd, OpenFileDescriptionAndFlags* description) : fd(tracked_fd) , m_description(description) { } ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other) : fd(other.fd) { // Take over the responsibility of tracking to deallocation. swap(m_description, other.m_description); } ScopedDescriptionAllocation& operator=(ScopedDescriptionAllocation&& other) { if (this != &other) { m_description = exchange(other.m_description, nullptr); fd = exchange(other.fd, -1); } return *this; } ~ScopedDescriptionAllocation() { if (m_description && m_description->is_allocated() && !m_description->is_valid()) { m_description->deallocate(); } } int fd { -1 }; private: OpenFileDescriptionAndFlags* m_description { nullptr }; }; class ProcessProcFSTraits : public ProcFSExposedComponent { public: static ErrorOr> try_create(Badge, WeakPtr process) { return adopt_nonnull_ref_or_enomem(new (nothrow) ProcessProcFSTraits(move(process))); } virtual InodeIndex component_index() const override; virtual ErrorOr> to_inode(const ProcFS& procfs_instance) const override; virtual ErrorOr traverse_as_directory(FileSystemID, Function(FileSystem::DirectoryEntryView const&)>) const override; virtual mode_t required_mode() const override { return 0555; } virtual UserID owner_user() const override; virtual GroupID owner_group() const override; private: explicit ProcessProcFSTraits(WeakPtr process) : m_process(move(process)) { } // NOTE: We need to weakly hold on to the process, because otherwise // we would be creating a reference cycle. WeakPtr m_process; }; MutexProtected& fds() { return m_fds; } MutexProtected const& fds() const { return m_fds; } ErrorOr> open_file_description(int fd) { return m_fds.with_shared([fd](auto& fds) { return fds.open_file_description(fd); }); } ErrorOr> open_file_description(int fd) const { return m_fds.with_shared([fd](auto& fds) { return fds.open_file_description(fd); }); } ErrorOr allocate_fd() { return m_fds.with_exclusive([](auto& fds) { return fds.allocate(); }); } private: SpinlockProtected& thread_list() { return m_thread_list; } SpinlockProtected const& thread_list() const { return m_thread_list; } SpinlockProtected m_thread_list; MutexProtected m_fds; const bool m_is_kernel_process; Atomic m_state { State::Running }; bool m_profiling { false }; Atomic m_is_stopped { false }; bool m_should_generate_coredump { false }; RefPtr m_executable; RefPtr m_cwd; NonnullOwnPtrVector m_arguments; NonnullOwnPtrVector m_environment; RefPtr m_tty; WeakPtr m_master_tls_region; size_t m_master_tls_size { 0 }; size_t m_master_tls_alignment { 0 }; Mutex m_big_lock { "Process" }; Mutex m_ptrace_lock { "ptrace" }; RefPtr m_alarm_timer; VeilState m_veil_state { VeilState::None }; UnveilNode m_unveiled_paths; OwnPtr m_perf_event_buffer; FutexQueues m_futex_queues; Spinlock m_futex_lock; // This member is used in the implementation of ptrace's PT_TRACEME flag. // If it is set to true, the process will stop at the next execve syscall // and wait for a tracer to attach. bool m_wait_for_tracer_at_next_execve { false }; Thread::WaitBlockerSet m_wait_blocker_set; struct CoredumpProperty { OwnPtr key; OwnPtr value; }; Array m_coredump_properties; NonnullRefPtrVector m_threads_for_coredump; mutable RefPtr m_procfs_traits; static_assert(sizeof(ProtectedValues) < (PAGE_SIZE)); alignas(4096) ProtectedValues m_protected_values; u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)]; public: using List = IntrusiveListRelaxedConst<&Process::m_list_node>; static SpinlockProtected& all_instances(); }; // Note: Process object should be 2 pages of 4096 bytes each. // It's not expected that the Process object will expand further because the first // page is used for all unprotected values (which should be plenty of space for them). // The second page is being used exclusively for write-protected values. static_assert(AssertSize()); extern RecursiveSpinlock g_profiling_lock; template Callback> inline void Process::for_each(Callback callback) { VERIFY_INTERRUPTS_DISABLED(); Process::all_instances().with([&](const auto& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (callback(process) == IterationDecision::Break) break; } }); } template Callback> inline void Process::for_each_child(Callback callback) { ProcessID my_pid = pid(); Process::all_instances().with([&](const auto& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (process.ppid() == my_pid || process.has_tracee_thread(pid())) { if (callback(process) == IterationDecision::Break) break; } } }); } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) const { return thread_list().with([&](auto& thread_list) -> IterationDecision { for (auto& thread : thread_list) { IterationDecision decision = callback(thread); if (decision != IterationDecision::Continue) return decision; } return IterationDecision::Continue; }); } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) { return thread_list().with([&](auto& thread_list) -> IterationDecision { for (auto& thread : thread_list) { IterationDecision decision = callback(thread); if (decision != IterationDecision::Continue) return decision; } return IterationDecision::Continue; }); } template Callback> inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback) { Process::all_instances().with([&](const auto& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (!process.is_dead() && process.pgid() == pgid) { if (callback(process) == IterationDecision::Break) break; } } }); } template Callback> inline void Process::for_each(Callback callback) { return for_each([&](auto& item) { callback(item); return IterationDecision::Continue; }); } template Callback> inline void Process::for_each_child(Callback callback) { return for_each_child([&](auto& item) { callback(item); return IterationDecision::Continue; }); } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) const { thread_list().with([&](auto& thread_list) { for (auto& thread : thread_list) callback(thread); }); return IterationDecision::Continue; } template Callback> inline IterationDecision Process::for_each_thread(Callback callback) { thread_list().with([&](auto& thread_list) { for (auto& thread : thread_list) callback(thread); }); return IterationDecision::Continue; } template Callback> inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback) { return for_each_in_pgrp(pgid, [&](auto& item) { callback(item); return IterationDecision::Continue; }); } inline bool InodeMetadata::may_read(const Process& process) const { return may_read(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_write(const Process& process) const { return may_write(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_execute(const Process& process) const { return may_execute(process.euid(), process.egid(), process.extra_gids()); } inline ProcessID Thread::pid() const { return m_process->pid(); } } #define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \ VERIFY(process->big_lock().is_exclusively_locked_by_current_thread()); #define VERIFY_NO_PROCESS_BIG_LOCK(process) \ VERIFY(!process->big_lock().is_exclusively_locked_by_current_thread()); inline static ErrorOr> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string) { Userspace characters((FlatPtr)string.characters); return try_copy_kstring_from_user(characters, string.length); } template<> struct AK::Formatter : AK::Formatter { ErrorOr format(FormatBuilder& builder, Kernel::Process const& value) { return AK::Formatter::format(builder, "{}({})", value.name(), value.pid().value()); } };