/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { void TCPSocket::for_each(Function callback) { sockets_by_tuple().for_each_shared([&](auto const& it) { callback(*it.value); }); } ErrorOr TCPSocket::try_for_each(Function(TCPSocket const&)> callback) { return sockets_by_tuple().with_shared([&](auto const& sockets) -> ErrorOr { for (auto& it : sockets) TRY(callback(*it.value)); return {}; }); } bool TCPSocket::unref() const { bool did_hit_zero = sockets_by_tuple().with_exclusive([&](auto& table) { if (deref_base()) return false; table.remove(tuple()); const_cast(*this).revoke_weak_ptrs(); return true; }); if (did_hit_zero) { const_cast(*this).will_be_destroyed(); delete this; } return did_hit_zero; } void TCPSocket::set_state(State new_state) { dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket({}) state moving from {} to {}", this, to_string(m_state), to_string(new_state)); auto was_disconnected = protocol_is_disconnected(); auto previous_role = m_role; m_state = new_state; if (new_state == State::Established && m_direction == Direction::Outgoing) { set_role(Role::Connected); clear_so_error(); } if (new_state == State::TimeWait) { // Once we hit TimeWait, we are only holding the socket in case there // are packets on the way which we wouldn't want a new socket to get hit // with, so there's no point in keeping the receive buffer around. drop_receive_buffer(); auto deadline = TimeManagement::the().current_time(CLOCK_MONOTONIC_COARSE) + maximum_segment_lifetime; auto timer_was_added = TimerQueue::the().add_timer_without_id(*m_timer, CLOCK_MONOTONIC_COARSE, deadline, [&]() { dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket({}) TimeWait timer elpased", this); if (m_state == State::TimeWait) { m_state = State::Closed; do_state_closed(); } }); if (!timer_was_added) [[unlikely]] { dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket({}) TimeWait timer deadline is in the past", this); m_state = State::Closed; new_state = State::Closed; } } if (new_state == State::Closed) do_state_closed(); if (previous_role != m_role || was_disconnected != protocol_is_disconnected()) evaluate_block_conditions(); } void TCPSocket::do_state_closed() { if (m_originator) release_to_originator(); closing_sockets().with_exclusive([&](auto& table) { table.remove(tuple()); }); } static Singleton>>> s_socket_closing; MutexProtected>>& TCPSocket::closing_sockets() { return *s_socket_closing; } static Singleton>> s_socket_tuples; MutexProtected>& TCPSocket::sockets_by_tuple() { return *s_socket_tuples; } RefPtr TCPSocket::from_tuple(IPv4SocketTuple const& tuple) { return sockets_by_tuple().with_shared([&](auto const& table) -> RefPtr { auto exact_match = table.get(tuple); if (exact_match.has_value()) return { *exact_match.value() }; auto address_tuple = IPv4SocketTuple(tuple.local_address(), tuple.local_port(), IPv4Address(), 0); auto address_match = table.get(address_tuple); if (address_match.has_value()) return { *address_match.value() }; auto wildcard_tuple = IPv4SocketTuple(IPv4Address(), tuple.local_port(), IPv4Address(), 0); auto wildcard_match = table.get(wildcard_tuple); if (wildcard_match.has_value()) return { *wildcard_match.value() }; return {}; }); } ErrorOr> TCPSocket::try_create_client(IPv4Address const& new_local_address, u16 new_local_port, IPv4Address const& new_peer_address, u16 new_peer_port) { auto tuple = IPv4SocketTuple(new_local_address, new_local_port, new_peer_address, new_peer_port); return sockets_by_tuple().with_exclusive([&](auto& table) -> ErrorOr> { if (table.contains(tuple)) return EEXIST; auto receive_buffer = TRY(try_create_receive_buffer()); auto client = TRY(TCPSocket::try_create(protocol(), move(receive_buffer))); client->set_setup_state(SetupState::InProgress); client->set_local_address(new_local_address); client->set_local_port(new_local_port); client->set_peer_address(new_peer_address); client->set_peer_port(new_peer_port); client->set_bound(true); client->set_direction(Direction::Incoming); client->set_originator(*this); m_pending_release_for_accept.set(tuple, client); client->m_registered_socket_tuple = tuple; table.set(tuple, client); return { move(client) }; }); } void TCPSocket::release_to_originator() { VERIFY(!!m_originator); m_originator.strong_ref()->release_for_accept(*this); m_originator.clear(); } void TCPSocket::release_for_accept(NonnullRefPtr socket) { VERIFY(m_pending_release_for_accept.contains(socket->tuple())); m_pending_release_for_accept.remove(socket->tuple()); // FIXME: Should we observe this error somehow? [[maybe_unused]] auto rc = queue_connection_from(move(socket)); } TCPSocket::TCPSocket(int protocol, NonnullOwnPtr receive_buffer, NonnullOwnPtr scratch_buffer, NonnullRefPtr timer) : IPv4Socket(SOCK_STREAM, protocol, move(receive_buffer), move(scratch_buffer)) , m_last_ack_sent_time(TimeManagement::the().monotonic_time()) , m_last_retransmit_time(TimeManagement::the().monotonic_time()) , m_timer(timer) { } TCPSocket::~TCPSocket() { dequeue_for_retransmit(); dbgln_if(TCP_SOCKET_DEBUG, "~TCPSocket in state {}", to_string(state())); } ErrorOr> TCPSocket::try_create(int protocol, NonnullOwnPtr receive_buffer) { // Note: Scratch buffer is only used for SOCK_STREAM sockets. auto scratch_buffer = TRY(KBuffer::try_create_with_size("TCPSocket: Scratch buffer"sv, 65536)); auto timer = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Timer)); return adopt_nonnull_ref_or_enomem(new (nothrow) TCPSocket(protocol, move(receive_buffer), move(scratch_buffer), timer)); } ErrorOr TCPSocket::protocol_size(ReadonlyBytes raw_ipv4_packet) { auto& ipv4_packet = *reinterpret_cast(raw_ipv4_packet.data()); auto& tcp_packet = *static_cast(ipv4_packet.payload()); return raw_ipv4_packet.size() - sizeof(IPv4Packet) - tcp_packet.header_size(); } ErrorOr TCPSocket::protocol_receive(ReadonlyBytes raw_ipv4_packet, UserOrKernelBuffer& buffer, size_t buffer_size, [[maybe_unused]] int flags) { auto& ipv4_packet = *reinterpret_cast(raw_ipv4_packet.data()); auto& tcp_packet = *static_cast(ipv4_packet.payload()); size_t payload_size = raw_ipv4_packet.size() - sizeof(IPv4Packet) - tcp_packet.header_size(); dbgln_if(TCP_SOCKET_DEBUG, "payload_size {}, will it fit in {}?", payload_size, buffer_size); VERIFY(buffer_size >= payload_size); SOCKET_TRY(buffer.write(tcp_packet.payload(), payload_size)); return payload_size; } ErrorOr TCPSocket::protocol_send(UserOrKernelBuffer const& data, size_t data_length) { auto adapter = bound_interface().with([](auto& bound_device) -> RefPtr { return bound_device; }); RoutingDecision routing_decision = route_to(peer_address(), local_address(), adapter); if (routing_decision.is_zero()) return set_so_error(EHOSTUNREACH); size_t mss = routing_decision.adapter->mtu() - sizeof(IPv4Packet) - sizeof(TCPPacket); if (!m_no_delay) { // RFC 896 (Nagle’s algorithm): https://www.ietf.org/rfc/rfc0896 // "The solution is to inhibit the sending of new TCP segments when // new outgoing data arrives from the user if any previously // transmitted data on the connection remains unacknowledged. This // inhibition is to be unconditional; no timers, tests for size of // data received, or other conditions are required." auto has_unacked_data = m_unacked_packets.with_shared([&](auto const& packets) { return packets.size > 0; }); if (has_unacked_data && data_length < mss) return set_so_error(EAGAIN); } data_length = min(data_length, mss); TRY(send_tcp_packet(TCPFlags::PSH | TCPFlags::ACK, &data, data_length, &routing_decision)); return data_length; } ErrorOr TCPSocket::send_ack(bool allow_duplicate) { if (!allow_duplicate && m_last_ack_number_sent == m_ack_number) return {}; return send_tcp_packet(TCPFlags::ACK); } ErrorOr TCPSocket::send_tcp_packet(u16 flags, UserOrKernelBuffer const* payload, size_t payload_size, RoutingDecision* user_routing_decision) { auto adapter = bound_interface().with([](auto& bound_device) -> RefPtr { return bound_device; }); RoutingDecision routing_decision = user_routing_decision ? *user_routing_decision : route_to(peer_address(), local_address(), adapter); if (routing_decision.is_zero()) return set_so_error(EHOSTUNREACH); auto ipv4_payload_offset = routing_decision.adapter->ipv4_payload_offset(); bool const has_mss_option = flags & TCPFlags::SYN; bool const has_window_scale_option = flags & TCPFlags::SYN; size_t const options_size = (has_mss_option ? sizeof(TCPOptionMSS) : 0) + (has_window_scale_option ? sizeof(TCPOptionWindowScale) : 0); size_t const tcp_header_size = sizeof(TCPPacket) + align_up_to(options_size, 4); size_t const buffer_size = ipv4_payload_offset + tcp_header_size + payload_size; auto packet = routing_decision.adapter->acquire_packet_buffer(buffer_size); if (!packet) return set_so_error(ENOMEM); routing_decision.adapter->fill_in_ipv4_header(*packet, local_address(), routing_decision.next_hop, peer_address(), IPv4Protocol::TCP, buffer_size - ipv4_payload_offset, type_of_service(), ttl()); memset(packet->buffer->data() + ipv4_payload_offset, 0, sizeof(TCPPacket)); auto& tcp_packet = *(TCPPacket*)(packet->buffer->data() + ipv4_payload_offset); VERIFY(local_port()); tcp_packet.set_source_port(local_port()); tcp_packet.set_destination_port(peer_port()); auto window_size = available_space_in_receive_buffer(); if ((flags & TCPFlags::SYN) == 0 && m_window_scaling_supported) window_size >>= receive_window_scale(); tcp_packet.set_window_size(min(window_size, NumericLimits::max())); tcp_packet.set_sequence_number(m_sequence_number); tcp_packet.set_data_offset(tcp_header_size / sizeof(u32)); tcp_packet.set_flags(flags); if (payload) { if (auto result = payload->read(tcp_packet.payload(), payload_size); result.is_error()) { routing_decision.adapter->release_packet_buffer(*packet); return set_so_error(result.release_error()); } } if (flags & TCPFlags::ACK) { m_last_ack_number_sent = m_ack_number; m_last_ack_sent_time = TimeManagement::the().monotonic_time(); tcp_packet.set_ack_number(m_ack_number); } if (flags & TCPFlags::SYN) { ++m_sequence_number; } else { m_sequence_number += payload_size; } u8* next_option = packet->buffer->data() + ipv4_payload_offset + sizeof(TCPPacket); if (has_mss_option) { u16 mss = routing_decision.adapter->mtu() - sizeof(IPv4Packet) - sizeof(TCPPacket); TCPOptionMSS mss_option { mss }; memcpy(next_option, &mss_option, sizeof(mss_option)); next_option += sizeof(mss_option); } if (has_window_scale_option) { TCPOptionWindowScale window_scale_option { receive_window_scale() }; memcpy(next_option, &window_scale_option, sizeof(window_scale_option)); next_option += sizeof(window_scale_option); } if ((options_size % 4) != 0) *next_option = to_underlying(TCPOptionKind::End); tcp_packet.set_checksum(compute_tcp_checksum(local_address(), peer_address(), tcp_packet, payload_size)); bool expect_ack { tcp_packet.has_syn() || payload_size > 0 }; if (expect_ack) { bool append_failed { false }; m_unacked_packets.with_exclusive([&](auto& unacked_packets) { auto result = unacked_packets.packets.try_append({ m_sequence_number, packet, ipv4_payload_offset, *routing_decision.adapter }); if (result.is_error()) { dbgln("TCPSocket: Dropped outbound packet because try_append() failed"); append_failed = true; return; } unacked_packets.size += payload_size; enqueue_for_retransmit(); }); if (append_failed) return set_so_error(ENOMEM); } m_packets_out++; m_bytes_out += buffer_size; routing_decision.adapter->send_packet(packet->bytes()); if (!expect_ack) routing_decision.adapter->release_packet_buffer(*packet); return {}; } void TCPSocket::receive_tcp_packet(TCPPacket const& packet, u16 size) { if (packet.has_ack()) { u32 ack_number = packet.ack_number(); dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket: receive_tcp_packet: {}", ack_number); int removed = 0; m_unacked_packets.with_exclusive([&](auto& unacked_packets) { while (!unacked_packets.packets.is_empty()) { auto& packet = unacked_packets.packets.first(); dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket: iterate: {}", packet.ack_number); if (packet.ack_number <= ack_number) { auto old_adapter = packet.adapter.strong_ref(); if (old_adapter) old_adapter->release_packet_buffer(*packet.buffer); TCPPacket& tcp_packet = *(TCPPacket*)(packet.buffer->buffer->data() + packet.ipv4_payload_offset); if (m_send_window_size != tcp_packet.window_size()) { m_send_window_size = tcp_packet.window_size() << m_send_window_scale; } auto payload_size = packet.buffer->buffer->data() + packet.buffer->buffer->size() - (u8*)tcp_packet.payload(); unacked_packets.size -= payload_size; evaluate_block_conditions(); unacked_packets.packets.take_first(); removed++; } else { break; } } if (unacked_packets.packets.is_empty()) { m_retransmit_attempts = 0; dequeue_for_retransmit(); } dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket: receive_tcp_packet acknowledged {} packets", removed); }); } m_packets_in++; m_bytes_in += packet.header_size() + size; } bool TCPSocket::should_delay_next_ack() const { // FIXME: We don't know the MSS here so make a reasonable guess. size_t const mss = 1500; // RFC 1122 says we should send an ACK for every two full-sized segments. if (m_ack_number >= m_last_ack_number_sent + 2 * mss) return false; // RFC 1122 says we should not delay ACKs for more than 500 milliseconds. if (TimeManagement::the().monotonic_time(TimePrecision::Precise) >= m_last_ack_sent_time + Duration::from_milliseconds(500)) return false; return true; } NetworkOrdered TCPSocket::compute_tcp_checksum(IPv4Address const& source, IPv4Address const& destination, TCPPacket const& packet, u16 payload_size) { union PseudoHeader { struct [[gnu::packed]] { IPv4Address source; IPv4Address destination; u8 zero; u8 protocol; NetworkOrdered payload_size; } header; u16 raw[6]; }; static_assert(sizeof(PseudoHeader) == 12); Checked packet_size = packet.header_size(); packet_size += payload_size; VERIFY(!packet_size.has_overflow()); PseudoHeader pseudo_header { .header = { source, destination, 0, (u8)IPv4Protocol::TCP, packet_size.value() } }; u32 checksum = 0; auto* raw_pseudo_header = pseudo_header.raw; for (size_t i = 0; i < sizeof(pseudo_header) / sizeof(u16); ++i) { checksum += AK::convert_between_host_and_network_endian(raw_pseudo_header[i]); if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } auto* raw_packet = bit_cast(&packet); for (size_t i = 0; i < packet.header_size() / sizeof(u16); ++i) { checksum += AK::convert_between_host_and_network_endian(raw_packet[i]); if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } VERIFY(packet.data_offset() * 4 == packet.header_size()); auto* raw_payload = bit_cast(packet.payload()); for (size_t i = 0; i < payload_size / sizeof(u16); ++i) { checksum += AK::convert_between_host_and_network_endian(raw_payload[i]); if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } if (payload_size & 1) { u16 expanded_byte = ((u8 const*)packet.payload())[payload_size - 1] << 8; checksum += expanded_byte; if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } return ~(checksum & 0xffff); } ErrorOr TCPSocket::setsockopt(int level, int option, Userspace user_value, socklen_t user_value_size) { if (level != IPPROTO_TCP) return IPv4Socket::setsockopt(level, option, user_value, user_value_size); MutexLocker locker(mutex()); switch (option) { case TCP_NODELAY: if (user_value_size < sizeof(int)) return EINVAL; int value; TRY(copy_from_user(&value, static_ptr_cast(user_value))); if (value != 0 && value != 1) return EINVAL; m_no_delay = value; return {}; default: dbgln("setsockopt({}) at IPPROTO_TCP not implemented.", option); return ENOPROTOOPT; } } ErrorOr TCPSocket::getsockopt(OpenFileDescription& description, int level, int option, Userspace value, Userspace value_size) { if (level != IPPROTO_TCP) return IPv4Socket::getsockopt(description, level, option, value, value_size); MutexLocker locker(mutex()); socklen_t size; TRY(copy_from_user(&size, value_size.unsafe_userspace_ptr())); switch (option) { case TCP_NODELAY: { int nodelay = m_no_delay ? 1 : 0; if (size < sizeof(nodelay)) return EINVAL; TRY(copy_to_user(static_ptr_cast(value), &nodelay)); size = sizeof(nodelay); return copy_to_user(value_size, &size); } default: dbgln("getsockopt({}) at IPPROTO_TCP not implemented.", option); return ENOPROTOOPT; } } ErrorOr TCPSocket::protocol_bind() { dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket::protocol_bind(), local_port() is {}", local_port()); // Check that we do have the address we're trying to bind to. TRY(m_adapter.with([this](auto& adapter) -> ErrorOr { if (has_specific_local_address() && !adapter) { adapter = NetworkingManagement::the().from_ipv4_address(local_address()); if (!adapter) return set_so_error(EADDRNOTAVAIL); } return {}; })); if (local_port() == 0) { // Allocate an unused ephemeral port. constexpr u16 first_ephemeral_port = 32768; constexpr u16 last_ephemeral_port = 60999; constexpr u16 ephemeral_port_range_size = last_ephemeral_port - first_ephemeral_port; u16 first_scan_port = first_ephemeral_port + get_good_random() % ephemeral_port_range_size; return sockets_by_tuple().with_exclusive([&](auto& table) -> ErrorOr { u16 port = first_scan_port; while (true) { IPv4SocketTuple proposed_tuple(local_address(), port, peer_address(), peer_port()); auto it = table.find(proposed_tuple); if (it == table.end()) { set_local_port(port); m_registered_socket_tuple = proposed_tuple; table.set(proposed_tuple, this); dbgln_if(TCP_SOCKET_DEBUG, "...allocated port {}, tuple {}", port, proposed_tuple.to_string()); return {}; } ++port; if (port > last_ephemeral_port) port = first_ephemeral_port; if (port == first_scan_port) break; } return set_so_error(EADDRINUSE); }); } else { // Verify that the user-supplied port is not already used by someone else. bool ok = sockets_by_tuple().with_exclusive([&](auto& table) -> bool { if (table.contains(tuple())) return false; auto socket_tuple = tuple(); m_registered_socket_tuple = socket_tuple; table.set(socket_tuple, this); return true; }); if (!ok) return set_so_error(EADDRINUSE); return {}; } } ErrorOr TCPSocket::protocol_listen() { set_direction(Direction::Passive); set_state(State::Listen); set_setup_state(SetupState::Completed); return {}; } ErrorOr TCPSocket::protocol_connect(OpenFileDescription& description) { MutexLocker locker(mutex()); auto routing_decision = route_to(peer_address(), local_address()); if (routing_decision.is_zero()) return set_so_error(EHOSTUNREACH); if (!has_specific_local_address()) set_local_address(routing_decision.adapter->ipv4_address()); TRY(ensure_bound()); if (m_registered_socket_tuple.has_value() && m_registered_socket_tuple != tuple()) { // If the socket was manually bound (using bind(2)) instead of implicitly using connect, // it will already be registered in the TCPSocket sockets_by_tuple table, under the previous // socket tuple. We replace the entry in the table to ensure it is also properly removed on // socket deletion, to prevent a dangling reference. TRY(sockets_by_tuple().with_exclusive([this](auto& table) -> ErrorOr { auto removed = table.remove(*m_registered_socket_tuple); VERIFY(removed); if (table.contains(tuple())) return set_so_error(EADDRINUSE); table.set(tuple(), this); return {}; })); m_registered_socket_tuple = tuple(); } m_sequence_number = get_good_random(); m_ack_number = 0; set_setup_state(SetupState::InProgress); TRY(send_tcp_packet(TCPFlags::SYN)); m_state = State::SynSent; set_role(Role::Connecting); m_direction = Direction::Outgoing; evaluate_block_conditions(); if (description.is_blocking()) { locker.unlock(); auto unblock_flags = Thread::FileBlocker::BlockFlags::None; if (Thread::current()->block({}, description, unblock_flags).was_interrupted()) return set_so_error(EINTR); locker.lock(); VERIFY(setup_state() == SetupState::Completed); if (has_error()) { // TODO: check unblock_flags set_role(Role::None); if (error() == TCPSocket::Error::RetransmitTimeout) return set_so_error(ETIMEDOUT); else return set_so_error(ECONNREFUSED); } return {}; } return set_so_error(EINPROGRESS); } bool TCPSocket::protocol_is_disconnected() const { switch (m_state) { case State::Closed: case State::CloseWait: case State::LastAck: case State::FinWait1: case State::FinWait2: case State::Closing: case State::TimeWait: return true; default: return false; } } void TCPSocket::shut_down_for_writing() { if (state() == State::Established) { dbgln_if(TCP_SOCKET_DEBUG, " Sending FIN from Established and moving into FinWait1"); (void)send_tcp_packet(TCPFlags::FIN | TCPFlags::ACK); set_state(State::FinWait1); } else { dbgln(" Shutting down TCPSocket for writing but not moving to FinWait1 since state is {}", to_string(state())); } } ErrorOr TCPSocket::close() { MutexLocker locker(mutex()); auto result = IPv4Socket::close(); if (state() == State::CloseWait) { dbgln_if(TCP_SOCKET_DEBUG, " Sending FIN from CloseWait and moving into LastAck"); [[maybe_unused]] auto rc = send_tcp_packet(TCPFlags::FIN | TCPFlags::ACK); set_state(State::LastAck); } if (state() != State::Closed && state() != State::Listen) closing_sockets().with_exclusive([&](auto& table) { table.set(tuple(), *this); }); return result; } static Singleton> s_sockets_for_retransmit; MutexProtected& TCPSocket::sockets_for_retransmit() { return *s_sockets_for_retransmit; } void TCPSocket::enqueue_for_retransmit() { sockets_for_retransmit().with_exclusive([&](auto& list) { list.append(*this); }); } void TCPSocket::dequeue_for_retransmit() { sockets_for_retransmit().with_exclusive([&](auto& list) { list.remove(*this); }); } void TCPSocket::retransmit_packets() { auto now = TimeManagement::the().monotonic_time(); // RFC6298 says we should have at least one second between retransmits. According to // RFC1122 we must do exponential backoff - even for SYN packets. i64 retransmit_interval = 1; for (decltype(m_retransmit_attempts) i = 0; i < m_retransmit_attempts; i++) retransmit_interval *= 2; if (m_last_retransmit_time > now - Duration::from_seconds(retransmit_interval)) return; dbgln_if(TCP_SOCKET_DEBUG, "TCPSocket({}) handling retransmit", this); m_last_retransmit_time = now; ++m_retransmit_attempts; if (m_retransmit_attempts > maximum_retransmits) { set_state(TCPSocket::State::Closed); set_error(TCPSocket::Error::RetransmitTimeout); set_setup_state(Socket::SetupState::Completed); return; } auto adapter = bound_interface().with([](auto& bound_device) -> RefPtr { return bound_device; }); auto routing_decision = route_to(peer_address(), local_address(), adapter); if (routing_decision.is_zero()) return; m_unacked_packets.with_exclusive([&](auto& unacked_packets) { for (auto& packet : unacked_packets.packets) { packet.tx_counter++; if constexpr (TCP_SOCKET_DEBUG) { auto& tcp_packet = *(const TCPPacket*)(packet.buffer->buffer->data() + packet.ipv4_payload_offset); dbgln("Sending TCP packet from {}:{} to {}:{} with ({}{}{}{}) seq_no={}, ack_no={}, tx_counter={}", local_address(), local_port(), peer_address(), peer_port(), (tcp_packet.has_syn() ? "SYN " : ""), (tcp_packet.has_ack() ? "ACK " : ""), (tcp_packet.has_fin() ? "FIN " : ""), (tcp_packet.has_rst() ? "RST " : ""), tcp_packet.sequence_number(), tcp_packet.ack_number(), packet.tx_counter); } size_t ipv4_payload_offset = routing_decision.adapter->ipv4_payload_offset(); if (ipv4_payload_offset != packet.ipv4_payload_offset) { // FIXME: Add support for this. This can happen if after a route change // we ended up on another adapter which doesn't have the same layer 2 type // like the previous adapter. VERIFY_NOT_REACHED(); } auto packet_buffer = packet.buffer->bytes(); routing_decision.adapter->fill_in_ipv4_header(*packet.buffer, local_address(), routing_decision.next_hop, peer_address(), IPv4Protocol::TCP, packet_buffer.size() - ipv4_payload_offset, type_of_service(), ttl()); routing_decision.adapter->send_packet(packet_buffer); m_packets_out++; m_bytes_out += packet_buffer.size(); } }); } bool TCPSocket::can_write(OpenFileDescription const& file_description, u64 size) const { if (!IPv4Socket::can_write(file_description, size)) return false; if (m_state == State::SynSent || m_state == State::SynReceived) return false; if (!file_description.is_blocking()) return true; return m_unacked_packets.with_shared([&](auto& unacked_packets) { return unacked_packets.size + size <= m_send_window_size; }); } }