/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ELF { class Loader; } namespace Kernel { timeval kgettimeofday(); void kgettimeofday(timeval&); extern VirtualAddress g_return_to_ring3_from_signal_trampoline; #define ENUMERATE_PLEDGE_PROMISES \ __ENUMERATE_PLEDGE_PROMISE(stdio) \ __ENUMERATE_PLEDGE_PROMISE(rpath) \ __ENUMERATE_PLEDGE_PROMISE(wpath) \ __ENUMERATE_PLEDGE_PROMISE(cpath) \ __ENUMERATE_PLEDGE_PROMISE(dpath) \ __ENUMERATE_PLEDGE_PROMISE(inet) \ __ENUMERATE_PLEDGE_PROMISE(id) \ __ENUMERATE_PLEDGE_PROMISE(proc) \ __ENUMERATE_PLEDGE_PROMISE(exec) \ __ENUMERATE_PLEDGE_PROMISE(unix) \ __ENUMERATE_PLEDGE_PROMISE(recvfd) \ __ENUMERATE_PLEDGE_PROMISE(sendfd) \ __ENUMERATE_PLEDGE_PROMISE(fattr) \ __ENUMERATE_PLEDGE_PROMISE(tty) \ __ENUMERATE_PLEDGE_PROMISE(chown) \ __ENUMERATE_PLEDGE_PROMISE(chroot) \ __ENUMERATE_PLEDGE_PROMISE(thread) \ __ENUMERATE_PLEDGE_PROMISE(video) \ __ENUMERATE_PLEDGE_PROMISE(accept) \ __ENUMERATE_PLEDGE_PROMISE(settime) \ __ENUMERATE_PLEDGE_PROMISE(sigaction) \ __ENUMERATE_PLEDGE_PROMISE(setkeymap) \ __ENUMERATE_PLEDGE_PROMISE(shared_buffer) enum class Pledge : u32 { #define __ENUMERATE_PLEDGE_PROMISE(x) x, ENUMERATE_PLEDGE_PROMISES #undef __ENUMERATE_PLEDGE_PROMISE }; enum class VeilState { None, Dropped, Locked, }; struct UnveiledPath { enum Access { Read = 1, Write = 2, Execute = 4, CreateOrRemove = 8, Browse = 16, }; String path; unsigned permissions { 0 }; }; class Process : public RefCounted , public InlineLinkedListNode , public Weakable { AK_MAKE_NONCOPYABLE(Process); AK_MAKE_NONMOVABLE(Process); friend class InlineLinkedListNode; friend class Thread; public: inline static Process* current() { auto current_thread = Processor::current().current_thread(); return current_thread ? ¤t_thread->process() : nullptr; } template static NonnullRefPtr create_kernel_process(RefPtr& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT) { auto* entry_func = new EntryFunction(move(entry)); return create_kernel_process( first_thread, move(name), [](void* data) { EntryFunction* func = reinterpret_cast(data); (*func)(); delete func; }, entry_func, affinity); } static NonnullRefPtr create_kernel_process(RefPtr& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT); static RefPtr create_user_process(RefPtr& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector&& arguments = Vector(), Vector&& environment = Vector(), TTY* = nullptr); ~Process(); static Vector all_pids(); static AK::NonnullRefPtrVector all_processes(); template RefPtr create_kernel_thread(EntryFunction entry, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true) { auto* entry_func = new EntryFunction(move(entry)); return create_kernel_thread([](void* data) { EntryFunction* func = reinterpret_cast(data); (*func)(); delete func; }, priority, name, affinity, joinable); } RefPtr create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true); bool is_profiling() const { return m_profiling; } void set_profiling(bool profiling) { m_profiling = profiling; } KBuffer backtrace() const; bool is_dead() const { return m_dead; } bool is_kernel_process() const { return m_is_kernel_process; } bool is_user_process() const { return !m_is_kernel_process; } PageDirectory& page_directory() { return *m_page_directory; } const PageDirectory& page_directory() const { return *m_page_directory; } static RefPtr from_pid(ProcessID); static SessionID get_sid_from_pgid(ProcessGroupID pgid); const String& name() const { return m_name; } ProcessID pid() const { return m_pid; } SessionID sid() const { return m_sid; } bool is_session_leader() const { return m_sid.value() == m_pid.value(); } ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; } bool is_group_leader() const { return pgid().value() == m_pid.value(); } Span extra_gids() const { return m_extra_gids; } uid_t euid() const { return m_euid; } gid_t egid() const { return m_egid; } uid_t uid() const { return m_uid; } gid_t gid() const { return m_gid; } uid_t suid() const { return m_suid; } gid_t sgid() const { return m_sgid; } ProcessID ppid() const { return m_ppid; } ThreadID exec_tid() const { return m_exec_tid; } mode_t umask() const { return m_umask; } bool in_group(gid_t) const; RefPtr file_description(int fd) const; int fd_flags(int fd) const; template static void for_each(Callback); template static void for_each_in_pgrp(ProcessGroupID, Callback); template void for_each_child(Callback); template void for_each_thread(Callback) const; void die(); void finalize(Thread&); ALWAYS_INLINE SpinLock& get_lock() const { return m_lock; } int sys$yield(); int sys$sync(); int sys$beep(); int sys$get_process_name(Userspace buffer, size_t buffer_size); int sys$set_process_name(Userspace user_name, size_t user_name_length); int sys$watch_file(Userspace path, size_t path_length); int sys$dbgputch(u8); int sys$dbgputstr(Userspace, int length); int sys$dump_backtrace(); pid_t sys$gettid(); int sys$donate(pid_t tid); int sys$ftruncate(int fd, off_t); pid_t sys$setsid(); pid_t sys$getsid(pid_t); int sys$setpgid(pid_t pid, pid_t pgid); pid_t sys$getpgrp(); pid_t sys$getpgid(pid_t); uid_t sys$getuid(); gid_t sys$getgid(); uid_t sys$geteuid(); gid_t sys$getegid(); pid_t sys$getpid(); pid_t sys$getppid(); int sys$getresuid(Userspace, Userspace, Userspace); int sys$getresgid(Userspace, Userspace, Userspace); mode_t sys$umask(mode_t); int sys$open(Userspace); int sys$close(int fd); ssize_t sys$read(int fd, Userspace, ssize_t); ssize_t sys$write(int fd, const u8*, ssize_t); ssize_t sys$writev(int fd, Userspace iov, int iov_count); int sys$fstat(int fd, Userspace); int sys$stat(Userspace); int sys$lseek(int fd, off_t, int whence); int sys$kill(pid_t pid_or_pgid, int sig); [[noreturn]] void sys$exit(int status); int sys$sigreturn(RegisterState& registers); pid_t sys$waitid(Userspace); void* sys$mmap(Userspace); int sys$munmap(void*, size_t size); int sys$set_mmap_name(Userspace); int sys$mprotect(void*, size_t, int prot); int sys$madvise(void*, size_t, int advice); int sys$minherit(void*, size_t, int inherit); int sys$purge(int mode); int sys$select(const Syscall::SC_select_params*); int sys$poll(Userspace); ssize_t sys$get_dir_entries(int fd, void*, ssize_t); int sys$getcwd(Userspace, ssize_t); int sys$chdir(Userspace, size_t); int sys$fchdir(int fd); int sys$sleep(unsigned seconds); int sys$usleep(useconds_t usec); int sys$adjtime(Userspace, Userspace); int sys$gettimeofday(Userspace); int sys$clock_gettime(clockid_t, Userspace); int sys$clock_settime(clockid_t, Userspace); int sys$clock_nanosleep(Userspace); int sys$gethostname(Userspace, ssize_t); int sys$sethostname(Userspace, ssize_t); int sys$uname(Userspace); int sys$readlink(Userspace); int sys$ttyname(int fd, Userspace, size_t); int sys$ptsname(int fd, Userspace, size_t); pid_t sys$fork(RegisterState&); int sys$execve(Userspace); int sys$dup2(int old_fd, int new_fd); int sys$sigaction(int signum, const sigaction* act, sigaction* old_act); int sys$sigprocmask(int how, Userspace set, Userspace old_set); int sys$sigpending(Userspace); int sys$getgroups(ssize_t, Userspace); int sys$setgroups(ssize_t, Userspace); int sys$pipe(int pipefd[2], int flags); int sys$killpg(pid_t pgrp, int sig); int sys$seteuid(uid_t); int sys$setegid(gid_t); int sys$setuid(uid_t); int sys$setgid(gid_t); int sys$setresuid(uid_t, uid_t, uid_t); int sys$setresgid(gid_t, gid_t, gid_t); unsigned sys$alarm(unsigned seconds); int sys$access(Userspace pathname, size_t path_length, int mode); int sys$fcntl(int fd, int cmd, u32 extra_arg); int sys$ioctl(int fd, unsigned request, FlatPtr arg); int sys$mkdir(Userspace pathname, size_t path_length, mode_t mode); clock_t sys$times(Userspace); int sys$utime(Userspace pathname, size_t path_length, Userspace); int sys$link(Userspace); int sys$unlink(Userspace pathname, size_t path_length); int sys$symlink(Userspace); int sys$rmdir(Userspace pathname, size_t path_length); int sys$mount(Userspace); int sys$umount(Userspace mountpoint, size_t mountpoint_length); int sys$chmod(Userspace pathname, size_t path_length, mode_t); int sys$fchmod(int fd, mode_t); int sys$chown(Userspace); int sys$fchown(int fd, uid_t, gid_t); int sys$socket(int domain, int type, int protocol); int sys$bind(int sockfd, Userspace addr, socklen_t); int sys$listen(int sockfd, int backlog); int sys$accept(int sockfd, Userspace, Userspace); int sys$connect(int sockfd, Userspace, socklen_t); int sys$shutdown(int sockfd, int how); ssize_t sys$sendmsg(int sockfd, Userspace, int flags); ssize_t sys$recvmsg(int sockfd, Userspace, int flags); int sys$getsockopt(Userspace); int sys$setsockopt(Userspace); int sys$getsockname(Userspace); int sys$getpeername(Userspace); int sys$sched_setparam(pid_t pid, Userspace); int sys$sched_getparam(pid_t pid, Userspace); int sys$create_thread(void* (*)(void*), Userspace); void sys$exit_thread(Userspace); int sys$join_thread(pid_t tid, Userspace exit_value); int sys$detach_thread(pid_t tid); int sys$set_thread_name(pid_t tid, Userspace buffer, size_t buffer_size); int sys$get_thread_name(pid_t tid, Userspace buffer, size_t buffer_size); int sys$rename(Userspace); int sys$mknod(Userspace); int sys$shbuf_create(int, void** buffer); int sys$shbuf_allow_pid(int, pid_t peer_pid); int sys$shbuf_allow_all(int); void* sys$shbuf_get(int shbuf_id, Userspace size); int sys$shbuf_release(int shbuf_id); int sys$shbuf_seal(int shbuf_id); int sys$shbuf_set_volatile(int shbuf_id, bool); int sys$halt(); int sys$reboot(); int sys$set_process_icon(int icon_id); int sys$realpath(Userspace); ssize_t sys$getrandom(Userspace, size_t, unsigned int); int sys$setkeymap(Userspace); int sys$module_load(Userspace path, size_t path_length); int sys$module_unload(Userspace name, size_t name_length); int sys$profiling_enable(pid_t); int sys$profiling_disable(pid_t); int sys$futex(Userspace); int sys$set_thread_boost(pid_t tid, int amount); int sys$set_process_boost(pid_t, int amount); int sys$chroot(Userspace path, size_t path_length, int mount_flags); int sys$pledge(Userspace); int sys$unveil(Userspace); int sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2); int sys$get_stack_bounds(FlatPtr* stack_base, size_t* stack_size); int sys$ptrace(Userspace); int sys$sendfd(int sockfd, int fd); int sys$recvfd(int sockfd); long sys$sysconf(int name); int sys$disown(ProcessID); template int get_sock_or_peer_name(const Params&); static void initialize(); [[noreturn]] void crash(int signal, u32 eip, bool out_of_memory = false); static void reap(Process&); [[nodiscard]] siginfo_t wait_info(); const TTY* tty() const { return m_tty; } void set_tty(TTY*); size_t region_count() const { return m_regions.size(); } const NonnullOwnPtrVector& regions() const { ASSERT(m_lock.is_locked()); return m_regions; } void dump_regions(); u32 m_ticks_in_user { 0 }; u32 m_ticks_in_kernel { 0 }; u32 m_ticks_in_user_for_dead_children { 0 }; u32 m_ticks_in_kernel_for_dead_children { 0 }; Custody& current_directory(); Custody* executable() { return m_executable.ptr(); } int number_of_open_file_descriptors() const; int max_open_file_descriptors() const { return m_max_open_file_descriptors; } size_t amount_clean_inode() const; size_t amount_dirty_private() const; size_t amount_virtual() const; size_t amount_resident() const; size_t amount_shared() const; size_t amount_purgeable_volatile() const; size_t amount_purgeable_nonvolatile() const; int exec(String path, Vector arguments, Vector environment, int recusion_depth = 0); bool is_superuser() const { return m_euid == 0; } Region* allocate_region_with_vmobject(VirtualAddress, size_t, NonnullRefPtr, size_t offset_in_vmobject, const String& name, int prot); Region* allocate_region(VirtualAddress, size_t, const String& name, int prot = PROT_READ | PROT_WRITE, bool should_commit = true); Region* allocate_region_with_vmobject(const Range&, NonnullRefPtr, size_t offset_in_vmobject, const String& name, int prot); Region* allocate_region(const Range&, const String& name, int prot = PROT_READ | PROT_WRITE, bool should_commit = true); bool deallocate_region(Region& region); Region& allocate_split_region(const Region& source_region, const Range&, size_t offset_in_vmobject); Vector split_region_around_range(const Region& source_region, const Range&); void terminate_due_to_signal(u8 signal); KResult send_signal(u8 signal, Process* sender); u16 thread_count() const { return m_thread_count.load(AK::MemoryOrder::memory_order_relaxed); } Lock& big_lock() { return m_big_lock; } struct ELFBundle { OwnPtr region; RefPtr elf_loader; }; OwnPtr elf_bundle() const; int icon_id() const { return m_icon_id; } u32 priority_boost() const { return m_priority_boost; } Custody& root_directory(); Custody& root_directory_relative_to_global_root(); void set_root_directory(const Custody&); bool has_promises() const { return m_promises; } bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); } VeilState veil_state() const { return m_veil_state; } const Vector& unveiled_paths() const { return m_unveiled_paths; } bool wait_for_tracer_at_next_execve() const { return m_wait_for_tracer_at_next_execve; } void set_wait_for_tracer_at_next_execve(bool val) { m_wait_for_tracer_at_next_execve = val; } KResultOr peek_user_data(Userspace address); KResult poke_user_data(Userspace address, u32 data); void unblock_waiters(Thread&, Thread::WaitBlocker::UnblockFlags, u8 signal = 0); Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; } private: friend class MemoryManager; friend class Scheduler; friend class Region; Process(RefPtr& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr cwd = nullptr, RefPtr executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr); static ProcessID allocate_pid(); Range allocate_range(VirtualAddress, size_t, size_t alignment = PAGE_SIZE); Region& add_region(NonnullOwnPtr); void kill_threads_except_self(); void kill_all_threads(); int do_exec(NonnullRefPtr main_program_description, Vector arguments, Vector environment, RefPtr interpreter_description, Thread*& new_main_thread, u32& prev_flags); ssize_t do_write(FileDescription&, const UserOrKernelBuffer&, size_t); KResultOr> find_elf_interpreter_for_executable(const String& path, char (&first_page)[PAGE_SIZE], int nread, size_t file_size); Vector generate_auxiliary_vector() const; int alloc_fd(int first_candidate_fd = 0); void disown_all_shared_buffers(); KResult do_kill(Process&, int signal); KResult do_killpg(ProcessGroupID pgrp, int signal); KResult do_killall(int signal); KResult do_killself(int signal); KResultOr do_waitid(idtype_t idtype, int id, int options); KResultOr get_syscall_path_argument(const char* user_path, size_t path_length) const; KResultOr get_syscall_path_argument(Userspace user_path, size_t path_length) const { return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length); } KResultOr get_syscall_path_argument(const Syscall::StringArgument&) const; bool has_tracee_thread(ProcessID tracer_pid) const; RefPtr m_page_directory; Process* m_prev { nullptr }; Process* m_next { nullptr }; String m_name; ProcessID m_pid { 0 }; SessionID m_sid { 0 }; RefPtr m_pg; uid_t m_euid { 0 }; gid_t m_egid { 0 }; uid_t m_uid { 0 }; gid_t m_gid { 0 }; uid_t m_suid { 0 }; gid_t m_sgid { 0 }; ThreadID m_exec_tid { 0 }; FlatPtr m_load_offset { 0U }; FlatPtr m_entry_eip { 0U }; static const int m_max_open_file_descriptors { FD_SETSIZE }; class FileDescriptionAndFlags { public: operator bool() const { return !!m_description; } FileDescription* description() { return m_description; } const FileDescription* description() const { return m_description; } u32 flags() const { return m_flags; } void set_flags(u32 flags) { m_flags = flags; } void clear(); void set(NonnullRefPtr&&, u32 flags = 0); private: RefPtr m_description; u32 m_flags { 0 }; }; Vector m_fds; u8 m_termination_status { 0 }; u8 m_termination_signal { 0 }; Atomic m_thread_count { 0 }; const bool m_is_kernel_process; bool m_dead { false }; bool m_profiling { false }; RefPtr m_executable; RefPtr m_cwd; RefPtr m_root_directory; RefPtr m_root_directory_relative_to_global_root; RefPtr m_tty; Region* find_region_from_range(const Range&); Region* find_region_containing(const Range&); NonnullOwnPtrVector m_regions; struct RegionLookupCache { Range range; WeakPtr region; }; RegionLookupCache m_region_lookup_cache; ProcessID m_ppid { 0 }; mode_t m_umask { 022 }; Vector m_extra_gids; WeakPtr m_master_tls_region; size_t m_master_tls_size { 0 }; size_t m_master_tls_alignment { 0 }; Lock m_big_lock { "Process" }; mutable SpinLock m_lock; u64 m_alarm_deadline { 0 }; int m_icon_id { -1 }; u32 m_priority_boost { 0 }; u32 m_promises { 0 }; u32 m_execpromises { 0 }; VeilState m_veil_state { VeilState::None }; Vector m_unveiled_paths; WaitQueue& futex_queue(Userspace); HashMap> m_futex_queues; OwnPtr m_perf_event_buffer; // This member is used in the implementation of ptrace's PT_TRACEME flag. // If it is set to true, the process will stop at the next execve syscall // and wait for a tracer to attach. bool m_wait_for_tracer_at_next_execve { false }; Thread::WaitBlockCondition m_wait_block_condition; }; extern InlineLinkedList* g_processes; extern RecursiveSpinLock g_processes_lock; template inline void Process::for_each(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); ScopedSpinLock lock(g_processes_lock); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (callback(*process) == IterationDecision::Break) break; process = next_process; } } template inline void Process::for_each_child(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); ProcessID my_pid = pid(); ScopedSpinLock lock(g_processes_lock); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (process->ppid() == my_pid || process->has_tracee_thread(m_pid)) { if (callback(*process) == IterationDecision::Break) break; } process = next_process; } } template inline void Process::for_each_thread(Callback callback) const { InterruptDisabler disabler; ProcessID my_pid = pid(); if (my_pid == 0) { // NOTE: Special case the colonel process, since its main thread is not in the global thread table. Processor::for_each( [&](Processor& proc) -> IterationDecision { auto idle_thread = proc.idle_thread(); if (idle_thread != nullptr) return callback(*idle_thread); return IterationDecision::Continue; }); return; } Thread::for_each([callback, my_pid](Thread& thread) -> IterationDecision { if (thread.pid() == my_pid) return callback(thread); return IterationDecision::Continue; }); } template inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback) { ASSERT_INTERRUPTS_DISABLED(); ScopedSpinLock lock(g_processes_lock); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (!process->is_dead() && process->pgid() == pgid) { if (callback(*process) == IterationDecision::Break) break; } process = next_process; } } inline bool InodeMetadata::may_read(const Process& process) const { return may_read(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_write(const Process& process) const { return may_write(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_execute(const Process& process) const { return may_execute(process.euid(), process.egid(), process.extra_gids()); } inline ProcessID Thread::pid() const { return m_process->pid(); } inline const LogStream& operator<<(const LogStream& stream, const Process& process) { return stream << process.name() << '(' << process.pid().value() << ')'; } inline u32 Thread::effective_priority() const { return m_priority + m_process->priority_boost() + m_priority_boost + m_extra_priority; } #define REQUIRE_NO_PROMISES \ do { \ if (Process::current()->has_promises()) { \ dbg() << "Has made a promise"; \ cli(); \ Process::current()->crash(SIGABRT, 0); \ ASSERT_NOT_REACHED(); \ } \ } while (0) #define REQUIRE_PROMISE(promise) \ do { \ if (Process::current()->has_promises() \ && !Process::current()->has_promised(Pledge::promise)) { \ dbg() << "Has not pledged " << #promise; \ cli(); \ Process::current()->crash(SIGABRT, 0); \ ASSERT_NOT_REACHED(); \ } \ } while (0) } inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string) { return copy_string_from_user(string.characters, string.length); }