/* * Copyright (c) 2022, Martin Falisse * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include namespace Web::Layout { GridFormattingContext::GridFormattingContext(LayoutState& state, BlockContainer const& block_container, FormattingContext* parent) : BlockFormattingContext(state, block_container, parent) { } GridFormattingContext::~GridFormattingContext() = default; void GridFormattingContext::run(Box const& box, LayoutMode, AvailableSpace const& available_space) { auto should_skip_is_anonymous_text_run = [&](Box& child_box) -> bool { if (child_box.is_anonymous() && !child_box.first_child_of_type()) { bool contains_only_white_space = true; child_box.for_each_in_subtree([&](auto const& node) { if (!is(node) || !static_cast(node).dom_node().data().is_whitespace()) { contains_only_white_space = false; return IterationDecision::Break; } return IterationDecision::Continue; }); if (contains_only_white_space) return true; } return false; }; // https://drafts.csswg.org/css-grid/#overview-placement // 2.2. Placing Items // The contents of the grid container are organized into individual grid items (analogous to // flex items), which are then assigned to predefined areas in the grid. They can be explicitly // placed using coordinates through the grid-placement properties or implicitly placed into // empty areas using auto-placement. struct PositionedBox { Box const& box; int row { 0 }; int row_span { 1 }; int column { 0 }; int column_span { 1 }; float computed_height { 0 }; }; Vector positioned_boxes; Vector boxes_to_place; box.for_each_child_of_type([&](Box& child_box) { if (should_skip_is_anonymous_text_run(child_box)) return IterationDecision::Continue; boxes_to_place.append(child_box); return IterationDecision::Continue; }); auto occupation_grid = OccupationGrid(static_cast(box.computed_values().grid_template_columns().size()), static_cast(box.computed_values().grid_template_rows().size())); // https://drafts.csswg.org/css-grid/#auto-placement-algo // 8.5. Grid Item Placement Algorithm // FIXME: 0. Generate anonymous grid items // 1. Position anything that's not auto-positioned. for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; if (is_auto_positioned_row(child_box.computed_values().grid_row_start(), child_box.computed_values().grid_row_end()) || is_auto_positioned_column(child_box.computed_values().grid_column_start(), child_box.computed_values().grid_column_end())) continue; int row_start = child_box.computed_values().grid_row_start().raw_value(); int row_end = child_box.computed_values().grid_row_end().raw_value(); int column_start = child_box.computed_values().grid_column_start().raw_value(); int column_end = child_box.computed_values().grid_column_end().raw_value(); // https://drafts.csswg.org/css-grid/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://drafts.csswg.org/css-grid/#grid-placement-slot // FIXME: // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Note: Named grid areas automatically generate implicitly-assigned line names of this form, so // specifying grid-row-start: foo will choose the start edge of that named grid area (unless another // line named foo-start was explicitly specified before it). // Otherwise, treat this as if the integer 1 had been specified along with the . // https://drafts.csswg.org/css-grid/#grid-placement-int // [ | ] && ? // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (row_end < 0) row_end = occupation_grid.row_count() + row_end + 2; if (column_end < 0) column_end = occupation_grid.column_count() + column_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // An value of zero makes the declaration invalid. // https://drafts.csswg.org/css-grid/#grid-placement-span-int // span && [ || ] // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. int row_span = 1; int column_span = 1; if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) { row_span = child_box.computed_values().grid_row_start().raw_value(); row_start = row_end - row_span; } if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) { column_span = child_box.computed_values().grid_column_start().raw_value(); column_start = column_end - column_span; } // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) { if (row_start > row_end) swap(row_start, row_end); if (row_start != row_end) row_span = row_end - row_start; } if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) { if (column_start > column_end) swap(column_start, column_end); if (column_start != column_end) column_span = column_end - column_start; } // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. row_start -= 1; column_start -= 1; positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span }); occupation_grid.maybe_add_row(row_start + row_span); occupation_grid.maybe_add_column(column_start + column_span); occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); boxes_to_place.remove(i); i--; } // 2. Process the items locked to a given row. // FIXME: Do "dense" packing for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; if (is_auto_positioned_row(child_box.computed_values().grid_row_start(), child_box.computed_values().grid_row_end())) continue; int row_start = child_box.computed_values().grid_row_start().raw_value(); int row_end = child_box.computed_values().grid_row_end().raw_value(); // https://drafts.csswg.org/css-grid/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://drafts.csswg.org/css-grid/#grid-placement-slot // FIXME: // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Note: Named grid areas automatically generate implicitly-assigned line names of this form, so // specifying grid-row-start: foo will choose the start edge of that named grid area (unless another // line named foo-start was explicitly specified before it). // Otherwise, treat this as if the integer 1 had been specified along with the . // https://drafts.csswg.org/css-grid/#grid-placement-int // [ | ] && ? // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (row_end < 0) row_end = occupation_grid.row_count() + row_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // An value of zero makes the declaration invalid. // https://drafts.csswg.org/css-grid/#grid-placement-span-int // span && [ || ] // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. int row_span = 1; if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_end().raw_value(); if (child_box.computed_values().grid_row_end().is_position() && child_box.computed_values().grid_row_start().is_span()) { row_span = child_box.computed_values().grid_row_start().raw_value(); row_start = row_end - row_span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-row: span 2 / 1 if (row_start < 0) row_start = 1; } // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position()) { if (row_start > row_end) swap(row_start, row_end); if (row_start != row_end) row_span = row_end - row_start; } // FIXME: Have yet to find the spec for this. if (!child_box.computed_values().grid_row_start().is_position() && child_box.computed_values().grid_row_end().is_position() && row_end == 1) row_start = 1; // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_row_start().is_span() && child_box.computed_values().grid_row_end().is_span()) row_span = child_box.computed_values().grid_row_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. row_start -= 1; occupation_grid.maybe_add_row(row_start + row_span); int column_start = 0; auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1; bool found_available_column = false; for (int column_index = column_start; column_index < occupation_grid.column_count(); column_index++) { if (!occupation_grid.is_occupied(column_index, row_start)) { found_available_column = true; column_start = column_index; break; } } if (!found_available_column) { column_start = occupation_grid.column_count(); occupation_grid.maybe_add_column(column_start + column_span); } occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span }); boxes_to_place.remove(i); i--; } // 3. Determine the columns in the implicit grid. // NOTE: "implicit grid" here is the same as the occupation_grid // 3.1. Start with the columns from the explicit grid. // NOTE: Done in step 1. // 3.2. Among all the items with a definite column position (explicitly positioned items, items // positioned in the previous step, and items not yet positioned but with a definite column) add // columns to the beginning and end of the implicit grid as necessary to accommodate those items. // NOTE: "Explicitly positioned items" and "items positioned in the previous step" done in step 1 // and 2, respectively. Adding columns for "items not yet positioned but with a definite column" // will be done in step 4. // 3.3. If the largest column span among all the items without a definite column position is larger // than the width of the implicit grid, add columns to the end of the implicit grid to accommodate // that column span. // NOTE: Done in step 1, 2, and will be done in step 4. // 4. Position the remaining grid items. // For each grid item that hasn't been positioned by the previous steps, in order-modified document // order: auto auto_placement_cursor_x = 0; auto auto_placement_cursor_y = 0; for (size_t i = 0; i < boxes_to_place.size(); i++) { auto const& child_box = boxes_to_place[i]; // 4.1. For sparse packing: // FIXME: no distinction made. See #4.2 // 4.1.1. If the item has a definite column position: if (!is_auto_positioned_column(child_box.computed_values().grid_column_start(), child_box.computed_values().grid_column_end())) { int column_start = child_box.computed_values().grid_column_start().raw_value(); int column_end = child_box.computed_values().grid_column_end().raw_value(); // https://drafts.csswg.org/css-grid/#line-placement // 8.3. Line-based Placement: the grid-row-start, grid-column-start, grid-row-end, and grid-column-end properties // https://drafts.csswg.org/css-grid/#grid-placement-slot // FIXME: // First attempt to match the grid area’s edge to a named grid area: if there is a grid line whose // line name is -start (for grid-*-start) / -end (for grid-*-end), // contributes the first such line to the grid item’s placement. // Note: Named grid areas automatically generate implicitly-assigned line names of this form, so // specifying grid-row-start: foo will choose the start edge of that named grid area (unless another // line named foo-start was explicitly specified before it). // Otherwise, treat this as if the integer 1 had been specified along with the . // https://drafts.csswg.org/css-grid/#grid-placement-int // [ | ] && ? // Contributes the Nth grid line to the grid item’s placement. If a negative integer is given, it // instead counts in reverse, starting from the end edge of the explicit grid. if (column_end < 0) column_end = occupation_grid.column_count() + column_end + 2; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines are assumed to have that name for the purpose // of finding this position. // An value of zero makes the declaration invalid. // https://drafts.csswg.org/css-grid/#grid-placement-span-int // span && [ || ] // Contributes a grid span to the grid item’s placement such that the corresponding edge of the grid // item’s grid area is N lines from its opposite edge in the corresponding direction. For example, // grid-column-end: span 2 indicates the second grid line in the endward direction from the // grid-column-start line. int column_span = 1; auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1; if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_end().raw_value(); if (child_box.computed_values().grid_column_end().is_position() && child_box.computed_values().grid_column_start().is_span()) { column_span = child_box.computed_values().grid_column_start().raw_value(); column_start = column_end - column_span; // FIXME: Remove me once have implemented spans overflowing into negative indexes, e.g., grid-column: span 2 / 1 if (column_start < 0) column_start = 1; } // FIXME: Have yet to find the spec for this. if (!child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position() && column_end == 1) column_start = 1; // If a name is given as a , only lines with that name are counted. If not enough // lines with that name exist, all implicit grid lines on the side of the explicit grid // corresponding to the search direction are assumed to have that name for the purpose of counting // this span. // https://drafts.csswg.org/css-grid/#grid-placement-auto // auto // The property contributes nothing to the grid item’s placement, indicating auto-placement or a // default span of one. (See § 8 Placing Grid Items, above.) // https://drafts.csswg.org/css-grid/#grid-placement-errors // 8.3.1. Grid Placement Conflict Handling // If the placement for a grid item contains two lines, and the start line is further end-ward than // the end line, swap the two lines. If the start line is equal to the end line, remove the end // line. if (child_box.computed_values().grid_column_start().is_position() && child_box.computed_values().grid_column_end().is_position()) { if (column_start > column_end) swap(column_start, column_end); if (column_start != column_end) column_span = column_end - column_start; } // If the placement contains two spans, remove the one contributed by the end grid-placement // property. if (child_box.computed_values().grid_column_start().is_span() && child_box.computed_values().grid_column_end().is_span()) column_span = child_box.computed_values().grid_column_start().raw_value(); // FIXME: If the placement contains only a span for a named line, replace it with a span of 1. column_start -= 1; // 4.1.1.1. Set the column position of the cursor to the grid item's column-start line. If this is // less than the previous column position of the cursor, increment the row position by 1. if (column_start < auto_placement_cursor_x) auto_placement_cursor_y++; auto_placement_cursor_x = column_start; occupation_grid.maybe_add_column(auto_placement_cursor_x + column_span); occupation_grid.maybe_add_row(auto_placement_cursor_y + row_span); // 4.1.1.2. Increment the cursor's row position until a value is found where the grid item does not // overlap any occupied grid cells (creating new rows in the implicit grid as necessary). while (true) { if (!occupation_grid.is_occupied(column_start, auto_placement_cursor_y)) { break; } auto_placement_cursor_y++; occupation_grid.maybe_add_row(auto_placement_cursor_y + row_span); } // 4.1.1.3. Set the item's row-start line to the cursor's row position, and set the item's row-end // line according to its span from that position. occupation_grid.set_occupied(column_start, column_start + column_span, auto_placement_cursor_y, auto_placement_cursor_y + row_span); positioned_boxes.append({ child_box, auto_placement_cursor_y, row_span, column_start, column_span }); } // 4.1.2. If the item has an automatic grid position in both axes: else { // 4.1.2.1. Increment the column position of the auto-placement cursor until either this item's grid // area does not overlap any occupied grid cells, or the cursor's column position, plus the item's // column span, overflow the number of columns in the implicit grid, as determined earlier in this // algorithm. auto column_start = 0; auto column_span = child_box.computed_values().grid_column_start().is_span() ? child_box.computed_values().grid_column_start().raw_value() : 1; auto row_start = 0; auto row_span = child_box.computed_values().grid_row_start().is_span() ? child_box.computed_values().grid_row_start().raw_value() : 1; auto found_unoccupied_area = false; for (int row_index = auto_placement_cursor_y; row_index < occupation_grid.row_count(); row_index++) { for (int column_index = auto_placement_cursor_x; column_index < occupation_grid.column_count(); column_index++) { if (column_span + column_index <= occupation_grid.column_count()) { auto found_all_available = true; for (int span_index = 0; span_index < column_span; span_index++) { if (occupation_grid.is_occupied(column_index + span_index, row_index)) found_all_available = false; } if (found_all_available) { found_unoccupied_area = true; column_start = column_index; row_start = row_index; goto finish; } } auto_placement_cursor_x = 0; } auto_placement_cursor_x = 0; auto_placement_cursor_y++; } finish: // 4.1.2.2. If a non-overlapping position was found in the previous step, set the item's row-start // and column-start lines to the cursor's position. Otherwise, increment the auto-placement cursor's // row position (creating new rows in the implicit grid as necessary), set its column position to the // start-most column line in the implicit grid, and return to the previous step. if (!found_unoccupied_area) { row_start = occupation_grid.row_count(); occupation_grid.maybe_add_row(occupation_grid.row_count() + 1); } occupation_grid.set_occupied(column_start, column_start + column_span, row_start, row_start + row_span); positioned_boxes.append({ child_box, row_start, row_span, column_start, column_span }); } boxes_to_place.remove(i); i--; // FIXME: 4.2. For dense packing: } auto& box_state = m_state.get_mutable(box); for (auto& positioned_box : positioned_boxes) { auto& child_box_state = m_state.get_mutable(positioned_box.box); if (child_box_state.content_height() > positioned_box.computed_height) positioned_box.computed_height = child_box_state.content_height(); if (auto independent_formatting_context = layout_inside(positioned_box.box, LayoutMode::Normal, available_space)) independent_formatting_context->parent_context_did_dimension_child_root_box(); if (child_box_state.content_height() > positioned_box.computed_height) positioned_box.computed_height = child_box_state.content_height(); } // https://drafts.csswg.org/css-grid/#overview-sizing // 2.3. Sizing the Grid // Once the grid items have been placed, the sizes of the grid tracks (rows and columns) are // calculated, accounting for the sizes of their contents and/or available space as specified in // the grid definition. // https://drafts.csswg.org/css-grid/#layout-algorithm // 12. Grid Sizing // This section defines the grid sizing algorithm, which determines the size of all grid tracks and, // by extension, the entire grid. // Each track has specified minimum and maximum sizing functions (which may be the same). Each // sizing function is either: // - A fixed sizing function ( or resolvable ). // - An intrinsic sizing function (min-content, max-content, auto, fit-content()). // - A flexible sizing function (). // The grid sizing algorithm defines how to resolve these sizing constraints into used track sizes. struct GridTrack { CSS::GridTrackSize min_track_sizing_function; CSS::GridTrackSize max_track_sizing_function; float base_size { 0 }; float growth_limit { 0 }; }; Vector grid_rows; Vector grid_columns; for (auto& column_size : box.computed_values().grid_template_columns()) grid_columns.append({ column_size, column_size }); for (auto& row_size : box.computed_values().grid_template_rows()) grid_rows.append({ row_size, row_size }); for (int column_index = grid_columns.size(); column_index < occupation_grid.column_count(); column_index++) grid_columns.append({ CSS::GridTrackSize::make_auto(), CSS::GridTrackSize::make_auto() }); for (int row_index = grid_rows.size(); row_index < occupation_grid.row_count(); row_index++) grid_rows.append({ CSS::GridTrackSize::make_auto(), CSS::GridTrackSize::make_auto() }); // https://drafts.csswg.org/css-grid/#algo-overview // 12.1. Grid Sizing Algorithm // FIXME: Deals with subgrids, min-content, and justify-content.. not implemented yet // https://drafts.csswg.org/css-grid/#algo-track-sizing // 12.3. Track Sizing Algorithm // The remainder of this section is the track sizing algorithm, which calculates from the min and // max track sizing functions the used track size. Each track has a base size, a which // grows throughout the algorithm and which will eventually be the track’s final size, and a growth // limit, a which provides a desired maximum size for the base size. There are 5 steps: // 1. Initialize Track Sizes // 2. Resolve Intrinsic Track Sizes // 3. Maximize Tracks // 4. Expand Flexible Tracks // 5. [[#algo-stretch|Expand Stretched auto Tracks]] // https://drafts.csswg.org/css-grid/#algo-init // 12.4. Initialize Track Sizes // Initialize each track’s base size and growth limit. for (auto& grid_column : grid_columns) { // For each track, if the track’s min track sizing function is: switch (grid_column.min_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial base size. // Indefinite lengths cannot occur, as they’re treated as auto. case CSS::GridTrackSize::Type::Length: if (!grid_column.min_track_sizing_function.length().is_auto()) grid_column.base_size = grid_column.min_track_sizing_function.length().to_px(box); break; case CSS::GridTrackSize::Type::Percentage: grid_column.base_size = grid_column.min_track_sizing_function.percentage().as_fraction() * box_state.content_width(); break; // - An intrinsic sizing function // Use an initial base size of zero. case CSS::GridTrackSize::Type::FlexibleLength: break; default: VERIFY_NOT_REACHED(); } // For each track, if the track’s max track sizing function is: switch (grid_column.max_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial growth limit. case CSS::GridTrackSize::Type::Length: if (!grid_column.max_track_sizing_function.length().is_auto()) grid_column.growth_limit = grid_column.max_track_sizing_function.length().to_px(box); else // - An intrinsic sizing function // Use an initial growth limit of infinity. grid_column.growth_limit = -1; break; case CSS::GridTrackSize::Type::Percentage: grid_column.growth_limit = grid_column.max_track_sizing_function.percentage().as_fraction() * box_state.content_width(); break; // - A flexible sizing function // Use an initial growth limit of infinity. case CSS::GridTrackSize::Type::FlexibleLength: grid_column.growth_limit = -1; break; default: VERIFY_NOT_REACHED(); } } // Initialize each track’s base size and growth limit. for (auto& grid_row : grid_rows) { // For each track, if the track’s min track sizing function is: switch (grid_row.min_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial base size. // Indefinite lengths cannot occur, as they’re treated as auto. case CSS::GridTrackSize::Type::Length: if (!grid_row.min_track_sizing_function.length().is_auto()) grid_row.base_size = grid_row.min_track_sizing_function.length().to_px(box); break; case CSS::GridTrackSize::Type::Percentage: grid_row.base_size = grid_row.min_track_sizing_function.percentage().as_fraction() * box_state.content_height(); break; // - An intrinsic sizing function // Use an initial base size of zero. case CSS::GridTrackSize::Type::FlexibleLength: break; default: VERIFY_NOT_REACHED(); } // For each track, if the track’s max track sizing function is: switch (grid_row.max_track_sizing_function.type()) { // - A fixed sizing function // Resolve to an absolute length and use that size as the track’s initial growth limit. case CSS::GridTrackSize::Type::Length: if (!grid_row.max_track_sizing_function.length().is_auto()) grid_row.growth_limit = grid_row.max_track_sizing_function.length().to_px(box); else // - An intrinsic sizing function // Use an initial growth limit of infinity. grid_row.growth_limit = -1; break; case CSS::GridTrackSize::Type::Percentage: grid_row.growth_limit = grid_row.max_track_sizing_function.percentage().as_fraction() * box_state.content_height(); break; // - A flexible sizing function // Use an initial growth limit of infinity. case CSS::GridTrackSize::Type::FlexibleLength: grid_row.growth_limit = -1; break; default: VERIFY_NOT_REACHED(); } } // FIXME: In all cases, if the growth limit is less than the base size, increase the growth limit to match // the base size. // https://drafts.csswg.org/css-grid/#algo-content // 12.5. Resolve Intrinsic Track Sizes // This step resolves intrinsic track sizing functions to absolute lengths. First it resolves those // sizes based on items that are contained wholly within a single track. Then it gradually adds in // the space requirements of items that span multiple tracks, evenly distributing the extra space // across those tracks insofar as possible. // FIXME: 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline // alignment. For the items in each baseline-sharing group, add a “shim” (effectively, additional // margin) on the start/end side (for first/last-baseline alignment) of each item so that, when // start/end-aligned together their baselines align as specified. // Consider these “shims” as part of the items’ intrinsic size contribution for the purpose of track // sizing, below. If an item uses multiple intrinsic size contributions, it can have different shims // for each one. // 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and // not a flexible sizing function, consider the items in it with a span of 1: int index = 0; for (auto& grid_column : grid_columns) { if (!grid_column.min_track_sizing_function.is_intrinsic_track_sizing()) { ++index; continue; } Vector boxes_of_column; for (auto& positioned_box : positioned_boxes) { if (positioned_box.column == index && positioned_box.column_span == 1) boxes_of_column.append(positioned_box.box); } // - For min-content minimums: // If the track has a min-content min track sizing function, set its base size to the maximum of the // items’ min-content contributions, floored at zero. // FIXME: Not implemented yet min-content. // - For max-content minimums: // If the track has a max-content min track sizing function, set its base size to the maximum of the // items’ max-content contributions, floored at zero. // FIXME: Not implemented yet max-content. // - For auto minimums: // If the track has an auto min track sizing function and the grid container is being sized under a // min-/max-content constraint, set the track’s base size to the maximum of its items’ limited // min-/max-content contributions (respectively), floored at zero. The limited min-/max-content // contribution of an item is (for this purpose) its min-/max-content contribution (accordingly), // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution (defined // below). // FIXME: Not implemented yet min-/max-content. // Otherwise, set the track’s base size to the maximum of its items’ minimum contributions, floored // at zero. The minimum contribution of an item is the smallest outer size it can have. // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its // containing block in the relevant axis, its minimum contribution is the outer size that would // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum // contribution is its min-content contribution. Because the minimum contribution often depends on // the size of the item’s content, it is considered a type of intrinsic size contribution. // For items with a specified minimum size of auto (the initial value), the minimum contribution is // usually equivalent to the min-content contribution—but can differ in some cases, see § 6.6 // Automatic Minimum Size of Grid Items. Also, minimum contribution ≤ min-content contribution ≤ // max-content contribution. float grid_column_width = 0; for (auto& box_of_column : boxes_of_column) grid_column_width = max(grid_column_width, calculate_min_content_width(box_of_column)); grid_column.base_size = grid_column_width; // - For min-content maximums: // If the track has a min-content max track sizing function, set its growth limit to the maximum of // the items’ min-content contributions. // FIXME: Not implemented yet min-content maximums. // - For max-content maximums: // If the track has a max-content max track sizing function, set its growth limit to the maximum of // the items’ max-content contributions. For fit-content() maximums, furthermore clamp this growth // limit by the fit-content() argument. // FIXME: Not implemented yet max-content maximums. // In all cases, if a track’s growth limit is now less than its base size, increase the growth limit // to match the base size. if (grid_column.growth_limit != -1 && grid_column.growth_limit < grid_column.base_size) grid_column.growth_limit = grid_column.base_size; ++index; } index = 0; for (auto& grid_row : grid_rows) { if (!grid_row.min_track_sizing_function.is_intrinsic_track_sizing()) { ++index; continue; } Vector positioned_boxes_of_row; for (auto& positioned_box : positioned_boxes) { if (positioned_box.row == index && positioned_box.row_span == 1) positioned_boxes_of_row.append(positioned_box); } // - For min-content minimums: // If the track has a min-content min track sizing function, set its base size to the maximum of the // items’ min-content contributions, floored at zero. // FIXME: Not implemented yet min-content. // - For max-content minimums: // If the track has a max-content min track sizing function, set its base size to the maximum of the // items’ max-content contributions, floored at zero. // FIXME: Not implemented yet max-content. // - For auto minimums: // If the track has an auto min track sizing function and the grid container is being sized under a // min-/max-content constraint, set the track’s base size to the maximum of its items’ limited // min-/max-content contributions (respectively), floored at zero. The limited min-/max-content // contribution of an item is (for this purpose) its min-/max-content contribution (accordingly), // limited by the max track sizing function (which could be the argument to a fit-content() track // sizing function) if that is fixed and ultimately floored by its minimum contribution (defined // below). // FIXME: Not implemented yet min-/max-content. // Otherwise, set the track’s base size to the maximum of its items’ minimum contributions, floored // at zero. The minimum contribution of an item is the smallest outer size it can have. // Specifically, if the item’s computed preferred size behaves as auto or depends on the size of its // containing block in the relevant axis, its minimum contribution is the outer size that would // result from assuming the item’s used minimum size as its preferred size; else the item’s minimum // contribution is its min-content contribution. Because the minimum contribution often depends on // the size of the item’s content, it is considered a type of intrinsic size contribution. // For items with a specified minimum size of auto (the initial value), the minimum contribution is // usually equivalent to the min-content contribution—but can differ in some cases, see § 6.6 // Automatic Minimum Size of Grid Items. Also, minimum contribution ≤ min-content contribution ≤ // max-content contribution. float grid_row_height = 0; for (auto& positioned_box : positioned_boxes_of_row) grid_row_height = max(grid_row_height, positioned_box.computed_height); grid_row.base_size = grid_row_height; // - For min-content maximums: // If the track has a min-content max track sizing function, set its growth limit to the maximum of // the items’ min-content contributions. // FIXME: Not implemented yet min-content maximums. // - For max-content maximums: // If the track has a max-content max track sizing function, set its growth limit to the maximum of // the items’ max-content contributions. For fit-content() maximums, furthermore clamp this growth // limit by the fit-content() argument. // FIXME: Not implemented yet max-content maximums. // In all cases, if a track’s growth limit is now less than its base size, increase the growth limit // to match the base size. if (grid_row.growth_limit != -1 && grid_row.growth_limit < grid_row.base_size) grid_row.growth_limit = grid_row.base_size; ++index; } // 3. Increase sizes to accommodate spanning items crossing content-sized tracks: Next, consider the // items with a span of 2 that do not span a track with a flexible sizing function. // FIXME: Content-sized tracks not implemented (min-content, etc.) // 3.1. For intrinsic minimums: First distribute extra space to base sizes of tracks with an intrinsic // min track sizing function, to accommodate these items’ minimum contributions. // If the grid container is being sized under a min- or max-content constraint, use the items’ // limited min-content contributions in place of their minimum contributions here. (For an item // spanning multiple tracks, the upper limit used to calculate its limited min-/max-content // contribution is the sum of the fixed max track sizing functions of any tracks it spans, and is // applied if it only spans such tracks.) // 3.2. For content-based minimums: Next continue to distribute extra space to the base sizes of tracks // with a min track sizing function of min-content or max-content, to accommodate these items' // min-content contributions. // 3.3. For max-content minimums: Next, if the grid container is being sized under a max-content // constraint, continue to distribute extra space to the base sizes of tracks with a min track // sizing function of auto or max-content, to accommodate these items' limited max-content // contributions. // In all cases, continue to distribute extra space to the base sizes of tracks with a min track // sizing function of max-content, to accommodate these items' max-content contributions. // 3.4. If at this point any track’s growth limit is now less than its base size, increase its growth // limit to match its base size. // 3.5. For intrinsic maximums: Next distribute extra space to the growth limits of tracks with intrinsic // max track sizing function, to accommodate these items' min-content contributions. Mark any tracks // whose growth limit changed from infinite to finite in this step as infinitely growable for the // next step. // 3.6. For max-content maximums: Lastly continue to distribute extra space to the growth limits of // tracks with a max track sizing function of max-content, to accommodate these items' max-content // contributions. However, limit the growth of any fit-content() tracks by their fit-content() // argument. // Repeat incrementally for items with greater spans until all items have been considered. // FIXME: 4. Increase sizes to accommodate spanning items crossing flexible tracks: Next, repeat the previous // step instead considering (together, rather than grouped by span size) all items that do span a // track with a flexible sizing function while distributing space only to flexible tracks (i.e. // treating all other tracks as having a fixed sizing function) // if the sum of the flexible sizing functions of all flexible tracks spanned by the item is greater // than or equal to one, distributing space to such tracks according to the ratios of their flexible // sizing functions rather than distributing space equally; and if the sum is less than one, // distributing that proportion of space according to the ratios of their flexible sizing functions // and the rest equally // FIXME: 5. If any track still has an infinite growth limit (because, for example, it had no items placed in // it or it is a flexible track), set its growth limit to its base size. // https://drafts.csswg.org/css-grid/#extra-space // 12.5.1. Distributing Extra Space Across Spanned Tracks // 1. Maintain separately for each affected track a planned increase, initially set to 0. (This // prevents the size increases from becoming order-dependent.) // 2. For each accommodated item, considering only tracks the item spans: // 2.1. Find the space to distribute: Subtract the affected size of every spanned track (not just the // affected tracks) from the item’s size contribution, flooring it at zero. (For infinite growth // limits, substitute the track’s base size.) This remaining size contribution is the space to // distribute. // space = max(0, size contribution - ∑track-sizes) // 2.2. Distribute space up to limits: // Find the item-incurred increase for each affected track by: distributing the space equally among // these tracks, freezing a track’s item-incurred increase as its affected size + item-incurred // increase reaches its limit (and continuing to grow the unfrozen tracks as needed). // For base sizes, the limit is its growth limit. For growth limits, the limit is infinity if it is // marked as infinitely growable, and equal to the growth limit otherwise. // If the affected size was a growth limit and the track is not marked infinitely growable, then each // item-incurred increase will be zero. // 2.3. Distribute space beyond limits: // If extra space remains at this point, unfreeze and continue to distribute space to the // item-incurred increase of… // - when accommodating minimum contributions or accommodating min-content contributions: any affected // track that happens to also have an intrinsic max track sizing function; if there are no such // tracks, then all affected tracks. // - when accommodating max-content contributions: any affected track that happens to also have a // max-content max track sizing function; if there are no such tracks, then all affected tracks. // - when handling any intrinsic growth limit: all affected tracks. // For this purpose, the max track sizing function of a fit-content() track is treated as // max-content until it reaches the limit specified as the fit-content() argument, after which it is // treated as having a fixed sizing function of that argument. // This step prioritizes the distribution of space for accommodating size contributions beyond the // tracks' current growth limits based on the types of their max track sizing functions. // 2.4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned // increase set the track’s planned increase to that value. // 3. Update the tracks' affected sizes by adding in the planned increase, so that the next round of // space distribution will account for the increase. (If the affected size is an infinite growth // limit, set it to the track’s base size plus the planned increase.) // https://drafts.csswg.org/css-grid/#algo-grow-tracks // 12.6. Maximize Tracks // If the free space is positive, distribute it equally to the base sizes of all tracks, freezing // tracks as they reach their growth limits (and continuing to grow the unfrozen tracks as needed). // For the purpose of this step: if sizing the grid container under a max-content constraint, the // free space is infinite; if sizing under a min-content constraint, the free space is zero. // If this would cause the grid to be larger than the grid container’s inner size as limited by its // max-width/height, then redo this step, treating the available grid space as equal to the grid // container’s inner size when it’s sized to its max-width/height. // FIXME: Do later as at the moment all growth limits are equal to base sizes. // https://drafts.csswg.org/css-grid/#algo-flex-tracks // 12.7. Expand Flexible Tracks // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding // the available space. // First, find the grid’s used flex fraction: auto column_flex_factor_sum = 0; for (auto& grid_column : grid_columns) { if (grid_column.min_track_sizing_function.is_flexible_length()) column_flex_factor_sum++; } // See 12.7.1. // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. if (column_flex_factor_sum < 1) column_flex_factor_sum = 1; // See 12.7.1. float sized_column_widths = 0; for (auto& grid_column : grid_columns) { if (!grid_column.min_track_sizing_function.is_flexible_length()) sized_column_widths += grid_column.base_size; } // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. double free_horizontal_space = box_state.content_width() - sized_column_widths; // If the free space is zero or if sizing the grid container under a min-content constraint: // The used flex fraction is zero. // FIXME: Add min-content constraint check. // Otherwise, if the free space is a definite length: // The used flex fraction is the result of finding the size of an fr using all of the grid tracks // and a space to fill of the available grid space. if (free_horizontal_space > 0) { for (auto& grid_column : grid_columns) { if (grid_column.min_track_sizing_function.is_flexible_length()) { // See 12.7.1. // Let the hypothetical fr size be the leftover space divided by the flex factor sum. auto hypothetical_fr_size = static_cast(1.0 / column_flex_factor_sum) * free_horizontal_space; // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. grid_column.base_size = max(grid_column.base_size, hypothetical_fr_size); } } } // First, find the grid’s used flex fraction: auto row_flex_factor_sum = 0; for (auto& grid_row : grid_rows) { if (grid_row.min_track_sizing_function.is_flexible_length()) row_flex_factor_sum++; } // See 12.7.1. // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. if (row_flex_factor_sum < 1) row_flex_factor_sum = 1; // See 12.7.1. float sized_row_heights = 0; for (auto& grid_row : grid_rows) { if (!grid_row.min_track_sizing_function.is_flexible_length()) sized_row_heights += grid_row.base_size; } // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. double free_vertical_space = box_state.content_height() - sized_row_heights; // If the free space is zero or if sizing the grid container under a min-content constraint: // The used flex fraction is zero. // FIXME: Add min-content constraint check. // Otherwise, if the free space is a definite length: // The used flex fraction is the result of finding the size of an fr using all of the grid tracks // and a space to fill of the available grid space. if (free_vertical_space > 0) { for (auto& grid_row : grid_rows) { if (grid_row.min_track_sizing_function.is_flexible_length()) { // See 12.7.1. // Let the hypothetical fr size be the leftover space divided by the flex factor sum. auto hypothetical_fr_size = static_cast(1.0 / row_flex_factor_sum) * free_vertical_space; // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. grid_row.base_size = max(grid_row.base_size, hypothetical_fr_size); } } } // Otherwise, if the free space is an indefinite length: // FIXME: No tracks will have indefinite length as per current implementation. // The used flex fraction is the maximum of: // For each flexible track, if the flexible track’s flex factor is greater than one, the result of // dividing the track’s base size by its flex factor; otherwise, the track’s base size. // For each grid item that crosses a flexible track, the result of finding the size of an fr using // all the grid tracks that the item crosses and a space to fill of the item’s max-content // contribution. // If using this flex fraction would cause the grid to be smaller than the grid container’s // min-width/height (or larger than the grid container’s max-width/height), then redo this step, // treating the free space as definite and the available grid space as equal to the grid container’s // inner size when it’s sized to its min-width/height (max-width/height). // For each flexible track, if the product of the used flex fraction and the track’s flex factor is // greater than the track’s base size, set its base size to that product. // https://drafts.csswg.org/css-grid/#algo-find-fr-size // 12.7.1. Find the Size of an fr // This algorithm finds the largest size that an fr unit can be without exceeding the target size. // It must be called with a set of grid tracks and some quantity of space to fill. // 1. Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks. // 2. Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less // than 1, set it to 1 instead. // 3. Let the hypothetical fr size be the leftover space divided by the flex factor sum. // FIXME: 4. If the product of the hypothetical fr size and a flexible track’s flex factor is less than the // track’s base size, restart this algorithm treating all such tracks as inflexible. // 5. Return the hypothetical fr size. // https://drafts.csswg.org/css-grid/#algo-stretch // 12.8. Stretch auto Tracks // When the content-distribution property of the grid container is normal or stretch in this axis, // this step expands tracks that have an auto max track sizing function by dividing any remaining // positive, definite free space equally amongst them. If the free space is indefinite, but the grid // container has a definite min-width/height, use that size to calculate the free space for this // step instead. float used_horizontal_space = 0; for (auto& grid_column : grid_columns) { if (!(grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto())) used_horizontal_space += grid_column.base_size; } float remaining_horizontal_space = box_state.content_width() - used_horizontal_space; auto count_of_auto_max_column_tracks = 0; for (auto& grid_column : grid_columns) { if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto()) count_of_auto_max_column_tracks++; } for (auto& grid_column : grid_columns) { if (grid_column.max_track_sizing_function.is_length() && grid_column.max_track_sizing_function.length().is_auto()) grid_column.base_size = max(grid_column.base_size, remaining_horizontal_space / count_of_auto_max_column_tracks); } float used_vertical_space = 0; for (auto& grid_row : grid_rows) { if (!(grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto())) used_vertical_space += grid_row.base_size; } float remaining_vertical_space = box_state.content_height() - used_vertical_space; auto count_of_auto_max_row_tracks = 0; for (auto& grid_row : grid_rows) { if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto()) count_of_auto_max_row_tracks++; } for (auto& grid_row : grid_rows) { if (grid_row.max_track_sizing_function.is_length() && grid_row.max_track_sizing_function.length().is_auto()) grid_row.base_size = max(grid_row.base_size, remaining_vertical_space / count_of_auto_max_row_tracks); } auto layout_box = [&](int row_start, int row_end, int column_start, int column_end, Box const& child_box) -> void { auto& child_box_state = m_state.get_mutable(child_box); float x_start = 0; float x_end = 0; float y_start = 0; float y_end = 0; for (int i = 0; i < column_start; i++) x_start += grid_columns[i].base_size; for (int i = 0; i < column_end; i++) x_end += grid_columns[i].base_size; for (int i = 0; i < row_start; i++) y_start += grid_rows[i].base_size; for (int i = 0; i < row_end; i++) y_end += grid_rows[i].base_size; child_box_state.set_content_width(x_end - x_start); child_box_state.set_content_height(y_end - y_start); child_box_state.offset = { x_start, y_start }; }; for (auto& positioned_box : positioned_boxes) { auto resolved_span = positioned_box.row + positioned_box.row_span > static_cast(grid_rows.size()) ? static_cast(grid_rows.size()) - positioned_box.row : positioned_box.row_span; layout_box(positioned_box.row, positioned_box.row + resolved_span, positioned_box.column, positioned_box.column + positioned_box.column_span, positioned_box.box); } float total_y = 0; for (auto& grid_row : grid_rows) total_y += grid_row.base_size; m_automatic_content_height = total_y; } float GridFormattingContext::automatic_content_height() const { return m_automatic_content_height; } bool GridFormattingContext::is_auto_positioned_row(CSS::GridTrackPlacement const& grid_row_start, CSS::GridTrackPlacement const& grid_row_end) const { return is_auto_positioned_track(grid_row_start, grid_row_end); } bool GridFormattingContext::is_auto_positioned_column(CSS::GridTrackPlacement const& grid_column_start, CSS::GridTrackPlacement const& grid_column_end) const { return is_auto_positioned_track(grid_column_start, grid_column_end); } bool GridFormattingContext::is_auto_positioned_track(CSS::GridTrackPlacement const& grid_track_start, CSS::GridTrackPlacement const& grid_track_end) const { return grid_track_start.is_auto_positioned() && grid_track_end.is_auto_positioned(); } OccupationGrid::OccupationGrid(int column_count, int row_count) { Vector occupation_grid_row; for (int column_index = 0; column_index < max(column_count, 1); column_index++) occupation_grid_row.append(false); for (int row_index = 0; row_index < max(row_count, 1); row_index++) m_occupation_grid.append(occupation_grid_row); } void OccupationGrid::maybe_add_column(int needed_number_of_columns) { if (needed_number_of_columns <= column_count()) return; for (auto& occupation_grid_row : m_occupation_grid) for (int idx = 0; idx < (needed_number_of_columns + 1) - column_count(); idx++) occupation_grid_row.append(false); } void OccupationGrid::maybe_add_row(int needed_number_of_rows) { if (needed_number_of_rows <= row_count()) return; Vector new_occupation_grid_row; for (int idx = 0; idx < column_count(); idx++) new_occupation_grid_row.append(false); for (int idx = 0; idx < needed_number_of_rows - row_count(); idx++) m_occupation_grid.append(new_occupation_grid_row); } void OccupationGrid::set_occupied(int column_start, int column_end, int row_start, int row_end) { for (int row_index = 0; row_index < row_count(); row_index++) { if (row_index >= row_start && row_index < row_end) { for (int column_index = 0; column_index < column_count(); column_index++) { if (column_index >= column_start && column_index < column_end) set_occupied(column_index, row_index); } } } } void OccupationGrid::set_occupied(int column_index, int row_index) { m_occupation_grid[row_index][column_index] = true; } bool OccupationGrid::is_occupied(int column_index, int row_index) { return m_occupation_grid[row_index][column_index]; } }