/* * Copyright (c) 2021-2022, Andreas Kling * Copyright (c) 2021, Tobias Christiansen * * SPDX-License-Identifier: BSD-2-Clause */ #include "InlineFormattingContext.h" #include #include #include #include #include #include #include #include #include #include namespace Web::Layout { // NOTE: We use a custom clamping function here instead of AK::clamp(), since the AK version // will VERIFY(max >= min) and CSS explicitly allows that (see css-values-4.) template [[nodiscard]] constexpr T css_clamp(T const& value, T const& min, T const& max) { return ::max(min, ::min(value, max)); } // FIXME: This is a hack helper, remove it when no longer needed. static CSS::Size to_css_size(CSS::LengthPercentage const& length_percentage) { if (length_percentage.is_auto()) return CSS::Size::make_auto(); if (length_percentage.is_length()) return CSS::Size::make_length(length_percentage.length()); return CSS::Size::make_percentage(length_percentage.percentage()); } float FlexFormattingContext::get_pixel_width(Box const& box, Optional const& size) const { if (!size.has_value()) return 0; auto inner_width = CSS::Length::make_px(containing_block_width_for(box)); float border_left = box.computed_values().border_left().width; float border_right = box.computed_values().border_right().width; float padding_left = box.computed_values().padding().left().resolved(box, inner_width).to_px(box); float padding_right = box.computed_values().padding().right().resolved(box, inner_width).to_px(box); if (box.computed_values().box_sizing() == CSS::BoxSizing::BorderBox) { return size->resolved(box, inner_width).to_px(box) - border_left - border_right - padding_left - padding_right; } return size->resolved(box, inner_width).to_px(box); } float FlexFormattingContext::get_pixel_height(Box const& box, Optional const& length_percentage) const { if (!length_percentage.has_value()) return 0; auto inner_height = CSS::Length::make_px(containing_block_height_for(box)); float border_top = box.computed_values().border_top().width; float border_bottom = box.computed_values().border_bottom().width; float padding_top = box.computed_values().padding().top().resolved(box, inner_height).to_px(box); float padding_bottom = box.computed_values().padding().bottom().resolved(box, inner_height).to_px(box); if (box.computed_values().box_sizing() == CSS::BoxSizing::BorderBox) { return length_percentage->resolved(box, inner_height).to_px(box) - border_top - border_bottom - padding_top - padding_bottom; } return length_percentage->resolved(box, inner_height).to_px(box); } FlexFormattingContext::FlexFormattingContext(LayoutState& state, Box const& flex_container, FormattingContext* parent) : FormattingContext(Type::Flex, state, flex_container, parent) , m_flex_container_state(m_state.get_mutable(flex_container)) , m_flex_direction(flex_container.computed_values().flex_direction()) { } FlexFormattingContext::~FlexFormattingContext() = default; float FlexFormattingContext::automatic_content_height() const { return m_state.get(flex_container()).content_height(); } void FlexFormattingContext::run(Box const& run_box, LayoutMode, AvailableSpace const& available_content_space) { VERIFY(&run_box == &flex_container()); // NOTE: The available space provided by the parent context is basically our *content box*. // FFC is currently written in a way that expects that to include padding and border as well, // so we pad out the available space here to accommodate that. // FIXME: Refactor the necessary parts of FFC so we don't need this hack! auto available_width = available_content_space.width; if (available_width.is_definite()) available_width = AvailableSize::make_definite(available_width.to_px() + m_flex_container_state.border_box_left() + m_flex_container_state.border_box_right()); auto available_height = available_content_space.height; if (available_height.is_definite()) available_height = AvailableSize::make_definite(available_height.to_px() + m_flex_container_state.border_box_top() + m_flex_container_state.border_box_bottom()); m_available_space_for_flex_container = AxisAgnosticAvailableSpace { .main = is_row_layout() ? available_width : available_height, .cross = !is_row_layout() ? available_width : available_height, .space = { available_width, available_height }, }; // This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm // 1. Generate anonymous flex items generate_anonymous_flex_items(); // 2. Determine the available main and cross space for the flex items determine_available_space_for_items(AvailableSpace(available_width, available_height)); { // https://drafts.csswg.org/css-flexbox-1/#definite-sizes // 3. If a single-line flex container has a definite cross size, // the automatic preferred outer cross size of any stretched flex items is the flex container’s inner cross size // (clamped to the flex item’s min and max cross size) and is considered definite. if (is_single_line() && has_definite_cross_size(flex_container())) { auto flex_container_inner_cross_size = specified_cross_size(flex_container()); for (auto& item : m_flex_items) { if (!flex_item_is_stretched(item)) continue; auto item_min_cross_size = has_cross_min_size(item.box) ? specified_cross_min_size(item.box) : automatic_minimum_size(item); auto item_max_cross_size = has_cross_max_size(item.box) ? specified_cross_max_size(item.box) : INFINITY; auto item_preferred_outer_cross_size = css_clamp(flex_container_inner_cross_size, item_min_cross_size, item_max_cross_size); auto item_inner_cross_size = item_preferred_outer_cross_size - item.margins.cross_before - item.margins.cross_after - item.padding.cross_before - item.padding.cross_after - item.borders.cross_before - item.borders.cross_after; set_cross_size(item.box, item_inner_cross_size); } } } // 3. Determine the flex base size and hypothetical main size of each item for (auto& flex_item : m_flex_items) { if (flex_item.box.is_replaced_box()) { // FIXME: Get rid of prepare_for_replaced_layout() and make replaced elements figure out their intrinsic size lazily. static_cast(flex_item.box).prepare_for_replaced_layout(); } determine_flex_base_size_and_hypothetical_main_size(flex_item); } if (available_width.is_intrinsic_sizing_constraint() || available_height.is_intrinsic_sizing_constraint()) { // We're computing intrinsic size for the flex container. determine_intrinsic_size_of_flex_container(); // Our caller is only interested in the content-width and content-height results, // which have now been set on m_flex_container_state, so there's no need to continue // the main layout algorithm after this point. return; } // 4. Determine the main size of the flex container determine_main_size_of_flex_container(); // 5. Collect flex items into flex lines: // After this step no additional items are to be added to flex_lines or any of its items! collect_flex_items_into_flex_lines(); // 6. Resolve the flexible lengths resolve_flexible_lengths(); // Cross Size Determination // 7. Determine the hypothetical cross size of each item for (auto& flex_item : m_flex_items) { determine_hypothetical_cross_size_of_item(flex_item, false); } // 8. Calculate the cross size of each flex line. calculate_cross_size_of_each_flex_line(); // 9. Handle 'align-content: stretch'. handle_align_content_stretch(); // 10. Collapse visibility:collapse items. // FIXME: This // 11. Determine the used cross size of each flex item. determine_used_cross_size_of_each_flex_item(); // 12. Distribute any remaining free space. distribute_any_remaining_free_space(); // 13. Resolve cross-axis auto margins. resolve_cross_axis_auto_margins(); // 14. Align all flex items along the cross-axis align_all_flex_items_along_the_cross_axis(); // 15. Determine the flex container’s used cross size: determine_flex_container_used_cross_size(); { // https://drafts.csswg.org/css-flexbox-1/#definite-sizes // 4. Once the cross size of a flex line has been determined, // the cross sizes of items in auto-sized flex containers are also considered definite for the purpose of layout. auto const& flex_container_computed_cross_size = is_row_layout() ? flex_container().computed_values().height() : flex_container().computed_values().width(); if (flex_container_computed_cross_size.is_auto()) { for (auto& item : m_flex_items) { set_cross_size(item.box, item.cross_size); } } } { // NOTE: We re-resolve cross sizes here, now that we can resolve percentages. // 7. Determine the hypothetical cross size of each item for (auto& flex_item : m_flex_items) { determine_hypothetical_cross_size_of_item(flex_item, true); } // 11. Determine the used cross size of each flex item. determine_used_cross_size_of_each_flex_item(); } // 16. Align all flex lines (per align-content) align_all_flex_lines(); // AD-HOC: Layout the inside of all flex items. copy_dimensions_from_flex_items_to_boxes(); for (auto& flex_item : m_flex_items) { auto& box_state = m_state.get(flex_item.box); if (auto independent_formatting_context = layout_inside(flex_item.box, LayoutMode::Normal, box_state.available_inner_space_or_constraints_from(m_available_space_for_flex_container->space))) independent_formatting_context->parent_context_did_dimension_child_root_box(); } // FIXME: We run the "copy dimensions" step *again* here, in order to override any sizes // assigned to the flex item by the "layout inside" step above. This is definitely not // part of the spec, and simply covering up the fact that our inside layout currently // mutates the height of BFC roots. copy_dimensions_from_flex_items_to_boxes(); } void FlexFormattingContext::parent_context_did_dimension_child_root_box() { flex_container().for_each_child_of_type([&](Layout::Box& box) { if (box.is_absolutely_positioned()) { auto& cb_state = m_state.get(*box.containing_block()); auto available_width = AvailableSize::make_definite(cb_state.content_width() + cb_state.padding_left + cb_state.padding_right); auto available_height = AvailableSize::make_definite(cb_state.content_height() + cb_state.padding_top + cb_state.padding_bottom); layout_absolutely_positioned_element(box, AvailableSpace(available_width, available_height)); } }); } void FlexFormattingContext::populate_specified_margins(FlexItem& item, CSS::FlexDirection flex_direction) const { auto width_of_containing_block = m_state.get(*item.box.containing_block()).content_width(); auto width_of_containing_block_as_length = CSS::Length::make_px(width_of_containing_block); // FIXME: This should also take reverse-ness into account if (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse) { item.borders.main_before = item.box.computed_values().border_left().width; item.borders.main_after = item.box.computed_values().border_right().width; item.borders.cross_before = item.box.computed_values().border_top().width; item.borders.cross_after = item.box.computed_values().border_bottom().width; item.padding.main_before = item.box.computed_values().padding().left().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.padding.main_after = item.box.computed_values().padding().right().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.padding.cross_before = item.box.computed_values().padding().top().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.padding.cross_after = item.box.computed_values().padding().bottom().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.main_before = item.box.computed_values().margin().left().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.main_after = item.box.computed_values().margin().right().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.cross_before = item.box.computed_values().margin().top().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.cross_after = item.box.computed_values().margin().bottom().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.main_before_is_auto = item.box.computed_values().margin().left().is_auto(); item.margins.main_after_is_auto = item.box.computed_values().margin().right().is_auto(); item.margins.cross_before_is_auto = item.box.computed_values().margin().top().is_auto(); item.margins.cross_after_is_auto = item.box.computed_values().margin().bottom().is_auto(); } else { item.borders.main_before = item.box.computed_values().border_top().width; item.borders.main_after = item.box.computed_values().border_bottom().width; item.borders.cross_before = item.box.computed_values().border_left().width; item.borders.cross_after = item.box.computed_values().border_right().width; item.padding.main_before = item.box.computed_values().padding().top().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.padding.main_after = item.box.computed_values().padding().bottom().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.padding.cross_before = item.box.computed_values().padding().left().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.padding.cross_after = item.box.computed_values().padding().right().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.main_before = item.box.computed_values().margin().top().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.main_after = item.box.computed_values().margin().bottom().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.cross_before = item.box.computed_values().margin().left().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.cross_after = item.box.computed_values().margin().right().resolved(item.box, width_of_containing_block_as_length).to_px(item.box); item.margins.main_before_is_auto = item.box.computed_values().margin().top().is_auto(); item.margins.main_after_is_auto = item.box.computed_values().margin().bottom().is_auto(); item.margins.cross_before_is_auto = item.box.computed_values().margin().left().is_auto(); item.margins.cross_after_is_auto = item.box.computed_values().margin().right().is_auto(); } }; // https://www.w3.org/TR/css-flexbox-1/#flex-items void FlexFormattingContext::generate_anonymous_flex_items() { // More like, sift through the already generated items. // After this step no items are to be added or removed from flex_items! // It holds every item we need to consider and there should be nothing in the following // calculations that could change that. // This is particularly important since we take references to the items stored in flex_items // later, whose addresses won't be stable if we added or removed any items. HashMap> order_item_bucket; flex_container().for_each_child_of_type([&](Box& child_box) { // Skip anonymous text runs that are only whitespace. if (child_box.is_anonymous() && !child_box.is_generated() && !child_box.first_child_of_type()) { bool contains_only_white_space = true; child_box.for_each_in_subtree([&](auto const& node) { if (!is(node) || !static_cast(node).dom_node().data().is_whitespace()) { contains_only_white_space = false; return IterationDecision::Break; } return IterationDecision::Continue; }); if (contains_only_white_space) return IterationDecision::Continue; } // Skip any "out-of-flow" children if (child_box.is_out_of_flow(*this)) return IterationDecision::Continue; child_box.set_flex_item(true); FlexItem flex_item = { child_box }; populate_specified_margins(flex_item, m_flex_direction); auto& order_bucket = order_item_bucket.ensure(child_box.computed_values().order()); order_bucket.append(move(flex_item)); return IterationDecision::Continue; }); auto keys = order_item_bucket.keys(); if (is_direction_reverse()) { quick_sort(keys, [](auto& a, auto& b) { return a > b; }); } else { quick_sort(keys, [](auto& a, auto& b) { return a < b; }); } for (auto key : keys) { auto order_bucket = order_item_bucket.get(key); if (order_bucket.has_value()) { auto items = order_bucket.value(); if (is_direction_reverse()) { for (auto flex_item : items.in_reverse()) { m_flex_items.append(move(flex_item)); } } else { for (auto flex_item : items) { m_flex_items.append(move(flex_item)); } } } } } bool FlexFormattingContext::has_definite_main_size(Box const& box) const { auto const& used_values = m_state.get(box); return is_row_layout() ? used_values.has_definite_width() : used_values.has_definite_height(); } float FlexFormattingContext::specified_main_size(Box const& box) const { auto const& box_state = m_state.get(box); return is_row_layout() ? box_state.content_width() : box_state.content_height(); } float FlexFormattingContext::specified_cross_size(Box const& box) const { auto const& box_state = m_state.get(box); return is_row_layout() ? box_state.content_height() : box_state.content_width(); } float FlexFormattingContext::resolved_definite_cross_size(FlexItem const& item) const { return !is_row_layout() ? m_state.resolved_definite_width(item.box) : m_state.resolved_definite_height(item.box); } float FlexFormattingContext::resolved_definite_main_size(FlexItem const& item) const { return is_row_layout() ? m_state.resolved_definite_width(item.box) : m_state.resolved_definite_height(item.box); } bool FlexFormattingContext::has_main_min_size(Box const& box) const { auto const& value = is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height(); return !value.is_auto(); } bool FlexFormattingContext::has_cross_min_size(Box const& box) const { auto const& value = is_row_layout() ? box.computed_values().min_height() : box.computed_values().min_width(); return !value.is_auto(); } bool FlexFormattingContext::has_definite_cross_size(Box const& box) const { auto const& used_values = m_state.get(box); return is_row_layout() ? used_values.has_definite_height() : used_values.has_definite_width(); } float FlexFormattingContext::specified_main_min_size(Box const& box) const { return is_row_layout() ? get_pixel_width(box, box.computed_values().min_width()) : get_pixel_height(box, box.computed_values().min_height()); } float FlexFormattingContext::specified_cross_min_size(Box const& box) const { return is_row_layout() ? get_pixel_height(box, box.computed_values().min_height()) : get_pixel_width(box, box.computed_values().min_width()); } bool FlexFormattingContext::has_main_max_size(Box const& box) const { auto const& value = is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height(); return !value.is_none(); } bool FlexFormattingContext::has_cross_max_size(Box const& box) const { auto const& value = !is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height(); return !value.is_none(); } float FlexFormattingContext::specified_main_max_size(Box const& box) const { return is_row_layout() ? get_pixel_width(box, box.computed_values().max_width()) : get_pixel_height(box, box.computed_values().max_height()); } float FlexFormattingContext::specified_cross_max_size(Box const& box) const { return is_row_layout() ? get_pixel_height(box, box.computed_values().max_height()) : get_pixel_width(box, box.computed_values().max_width()); } bool FlexFormattingContext::is_cross_auto(Box const& box) const { auto& cross_length = is_row_layout() ? box.computed_values().height() : box.computed_values().width(); return cross_length.is_auto(); } void FlexFormattingContext::set_main_size(Box const& box, float size) { if (is_row_layout()) m_state.get_mutable(box).set_content_width(size); else m_state.get_mutable(box).set_content_height(size); } void FlexFormattingContext::set_cross_size(Box const& box, float size) { if (is_row_layout()) m_state.get_mutable(box).set_content_height(size); else m_state.get_mutable(box).set_content_width(size); } void FlexFormattingContext::set_offset(Box const& box, float main_offset, float cross_offset) { if (is_row_layout()) m_state.get_mutable(box).offset = Gfx::FloatPoint { main_offset, cross_offset }; else m_state.get_mutable(box).offset = Gfx::FloatPoint { cross_offset, main_offset }; } void FlexFormattingContext::set_main_axis_first_margin(FlexItem& item, float margin) { item.margins.main_before = margin; if (is_row_layout()) m_state.get_mutable(item.box).margin_left = margin; else m_state.get_mutable(item.box).margin_top = margin; } void FlexFormattingContext::set_main_axis_second_margin(FlexItem& item, float margin) { item.margins.main_after = margin; if (is_row_layout()) m_state.get_mutable(item.box).margin_right = margin; else m_state.get_mutable(item.box).margin_bottom = margin; } // https://drafts.csswg.org/css-flexbox-1/#algo-available void FlexFormattingContext::determine_available_space_for_items(AvailableSpace const& available_space) { // For each dimension, if that dimension of the flex container’s content box is a definite size, use that; // if that dimension of the flex container is being sized under a min or max-content constraint, the available space in that dimension is that constraint; // otherwise, subtract the flex container’s margin, border, and padding from the space available to the flex container in that dimension and use that value. // This might result in an infinite value. Optional available_width_for_items; if (m_flex_container_state.has_definite_width()) { available_width_for_items = AvailableSize::make_definite(m_state.resolved_definite_width(flex_container())); } else { if (available_space.width.is_intrinsic_sizing_constraint()) { available_width_for_items = available_space.width; } else { if (available_space.width.is_definite()) { auto remaining = available_space.width.to_px() - m_flex_container_state.margin_left - m_flex_container_state.margin_right - m_flex_container_state.border_left - m_flex_container_state.padding_right - m_flex_container_state.padding_left - m_flex_container_state.padding_right; available_width_for_items = AvailableSize::make_definite(remaining); } else { available_width_for_items = AvailableSize::make_indefinite(); } } } Optional available_height_for_items; if (m_flex_container_state.has_definite_height()) { available_height_for_items = AvailableSize::make_definite(m_state.resolved_definite_height(flex_container())); } else { if (available_space.height.is_intrinsic_sizing_constraint()) { available_height_for_items = available_space.height; } else { if (available_space.height.is_definite()) { auto remaining = available_space.height.to_px() - m_flex_container_state.margin_top - m_flex_container_state.margin_bottom - m_flex_container_state.border_top - m_flex_container_state.padding_bottom - m_flex_container_state.padding_top - m_flex_container_state.padding_bottom; available_height_for_items = AvailableSize::make_definite(remaining); } else { available_height_for_items = AvailableSize::make_indefinite(); } } } if (is_row_layout()) { m_available_space_for_items = AxisAgnosticAvailableSpace { .main = *available_width_for_items, .cross = *available_height_for_items, .space = { *available_width_for_items, *available_height_for_items }, }; } else { m_available_space_for_items = AxisAgnosticAvailableSpace { .main = *available_height_for_items, .cross = *available_width_for_items, .space = { *available_width_for_items, *available_height_for_items }, }; } } float FlexFormattingContext::calculate_indefinite_main_size(FlexItem const& item) { VERIFY(!has_definite_main_size(item.box)); // Otherwise, size the item into the available space using its used flex basis in place of its main size, // treating a value of content as max-content. if (item.used_flex_basis.type == CSS::FlexBasis::Content) return calculate_max_content_main_size(item); // If a cross size is needed to determine the main size // (e.g. when the flex item’s main size is in its block axis, or when it has a preferred aspect ratio) // and the flex item’s cross size is auto and not definite, // in this calculation use fit-content as the flex item’s cross size. // The flex base size is the item’s resulting main size. bool main_size_is_in_block_axis = !is_row_layout(); // FIXME: Figure out if we have a preferred aspect ratio. bool has_preferred_aspect_ratio = false; bool cross_size_needed_to_determine_main_size = main_size_is_in_block_axis || has_preferred_aspect_ratio; if (cross_size_needed_to_determine_main_size) { // Figure out the fit-content cross size, then layout with that and see what height comes out of it. float fit_content_cross_size = calculate_fit_content_cross_size(item); LayoutState throwaway_state(&m_state); auto& box_state = throwaway_state.get_mutable(item.box); // Item has definite cross size, layout with that as the used cross size. auto independent_formatting_context = create_independent_formatting_context_if_needed(throwaway_state, item.box); // NOTE: Flex items should always create an independent formatting context! VERIFY(independent_formatting_context); box_state.set_content_width(fit_content_cross_size); independent_formatting_context->run(item.box, LayoutMode::Normal, m_available_space_for_items->space); return independent_formatting_context->automatic_content_height(); } return calculate_fit_content_main_size(item); } // https://drafts.csswg.org/css-flexbox-1/#propdef-flex-basis CSS::FlexBasisData FlexFormattingContext::used_flex_basis_for_item(FlexItem const& item) const { auto flex_basis = item.box.computed_values().flex_basis(); if (flex_basis.type == CSS::FlexBasis::Auto) { // https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto // When specified on a flex item, the auto keyword retrieves the value of the main size property as the used flex-basis. // If that value is itself auto, then the used value is content. auto const& main_size = is_row_layout() ? item.box.computed_values().width() : item.box.computed_values().height(); if (main_size.is_auto()) { flex_basis.type = CSS::FlexBasis::Content; } else { flex_basis.type = CSS::FlexBasis::LengthPercentage; if (main_size.is_length()) { flex_basis.length_percentage = main_size.length(); } else if (main_size.is_percentage()) { flex_basis.length_percentage = main_size.percentage(); } else { // FIXME: Support other size values! dbgln("FIXME: Unsupported main size for flex-basis!"); flex_basis.type = CSS::FlexBasis::Content; } } } return flex_basis; } // https://www.w3.org/TR/css-flexbox-1/#algo-main-item void FlexFormattingContext::determine_flex_base_size_and_hypothetical_main_size(FlexItem& flex_item) { auto& child_box = flex_item.box; flex_item.flex_base_size = [&] { flex_item.used_flex_basis = used_flex_basis_for_item(flex_item); flex_item.used_flex_basis_is_definite = [&](CSS::FlexBasisData const& flex_basis) -> bool { if (flex_basis.type != CSS::FlexBasis::LengthPercentage) return false; if (flex_basis.length_percentage->is_auto()) return false; if (flex_basis.length_percentage->is_length()) return true; if (flex_basis.length_percentage->is_calculated()) { // FIXME: Handle calc() in used flex basis. return false; } if (is_row_layout()) return m_flex_container_state.has_definite_width(); return m_flex_container_state.has_definite_height(); }(flex_item.used_flex_basis); // A. If the item has a definite used flex basis, that’s the flex base size. if (flex_item.used_flex_basis_is_definite) { if (is_row_layout()) return get_pixel_width(child_box, to_css_size(flex_item.used_flex_basis.length_percentage.value())); return get_pixel_height(child_box, to_css_size(flex_item.used_flex_basis.length_percentage.value())); } // B. If the flex item has ... // - an intrinsic aspect ratio, // - a used flex basis of content, and // - a definite cross size, if (flex_item.box.has_intrinsic_aspect_ratio() && flex_item.used_flex_basis.type == CSS::FlexBasis::Content && has_definite_cross_size(flex_item.box)) { // flex_base_size is calculated from definite cross size and intrinsic aspect ratio return resolved_definite_cross_size(flex_item) * flex_item.box.intrinsic_aspect_ratio().value(); } // C. If the used flex basis is content or depends on its available space, // and the flex container is being sized under a min-content or max-content constraint // (e.g. when performing automatic table layout [CSS21]), size the item under that constraint. // The flex base size is the item’s resulting main size. if (flex_item.used_flex_basis.type == CSS::FlexBasis::Content && m_available_space_for_items->main.is_intrinsic_sizing_constraint()) { if (m_available_space_for_items->main.is_min_content()) return calculate_min_content_main_size(flex_item); return calculate_max_content_main_size(flex_item); } // D. Otherwise, if the used flex basis is content or depends on its available space, // the available main size is infinite, and the flex item’s inline axis is parallel to the main axis, // lay the item out using the rules for a box in an orthogonal flow [CSS3-WRITING-MODES]. // The flex base size is the item’s max-content main size. if (flex_item.used_flex_basis.type == CSS::FlexBasis::Content // FIXME: && main_size is infinite && inline axis is parallel to the main axis && false && false) { TODO(); // Use rules for a flex_container in orthogonal flow } // E. Otherwise, size the item into the available space using its used flex basis in place of its main size, // treating a value of content as max-content. If a cross size is needed to determine the main size // (e.g. when the flex item’s main size is in its block axis) and the flex item’s cross size is auto and not definite, // in this calculation use fit-content as the flex item’s cross size. // The flex base size is the item’s resulting main size. // FIXME: This is probably too naive. // FIXME: Care about FlexBasis::Auto if (has_definite_main_size(child_box)) return resolved_definite_main_size(flex_item); return calculate_indefinite_main_size(flex_item); }(); // The hypothetical main size is the item’s flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero). auto clamp_min = has_main_min_size(child_box) ? specified_main_min_size(child_box) : automatic_minimum_size(flex_item); auto clamp_max = has_main_max_size(child_box) ? specified_main_max_size(child_box) : NumericLimits::max(); flex_item.hypothetical_main_size = max(0.0f, css_clamp(flex_item.flex_base_size, clamp_min, clamp_max)); // NOTE: At this point, we set the hypothetical main size as the flex item's *temporary* main size. // The size may change again when we resolve flexible lengths, but this is necessary in order for // descendants of this flex item to resolve percentage sizes against something. // // The spec just barely hand-waves about this, but it seems to *roughly* match what other engines do. // See "Note" section here: https://drafts.csswg.org/css-flexbox-1/#definite-sizes if (is_row_layout()) m_state.get_mutable(flex_item.box).set_temporary_content_width(flex_item.hypothetical_main_size); else m_state.get_mutable(flex_item.box).set_temporary_content_height(flex_item.hypothetical_main_size); } // https://drafts.csswg.org/css-flexbox-1/#min-size-auto float FlexFormattingContext::automatic_minimum_size(FlexItem const& item) const { // FIXME: Deal with scroll containers. return content_based_minimum_size(item); } // https://drafts.csswg.org/css-flexbox-1/#specified-size-suggestion Optional FlexFormattingContext::specified_size_suggestion(FlexItem const& item) const { // If the item’s preferred main size is definite and not automatic, // then the specified size suggestion is that size. It is otherwise undefined. if (has_definite_main_size(item.box)) return specified_main_size(item.box); return {}; } // https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion float FlexFormattingContext::content_size_suggestion(FlexItem const& item) const { // FIXME: Apply clamps return calculate_min_content_main_size(item); } // https://drafts.csswg.org/css-flexbox-1/#transferred-size-suggestion Optional FlexFormattingContext::transferred_size_suggestion(FlexItem const& item) const { // If the item has a preferred aspect ratio and its preferred cross size is definite, // then the transferred size suggestion is that size // (clamped by its minimum and maximum cross sizes if they are definite), converted through the aspect ratio. if (item.box.has_intrinsic_aspect_ratio() && has_definite_cross_size(item.box)) { auto aspect_ratio = item.box.intrinsic_aspect_ratio().value(); // FIXME: Clamp cross size to min/max cross size before this conversion. return resolved_definite_cross_size(item) * aspect_ratio; } // It is otherwise undefined. return {}; } // https://drafts.csswg.org/css-flexbox-1/#content-based-minimum-size float FlexFormattingContext::content_based_minimum_size(FlexItem const& item) const { auto unclamped_size = [&] { // The content-based minimum size of a flex item is the smaller of its specified size suggestion // and its content size suggestion if its specified size suggestion exists; if (auto specified_size_suggestion = this->specified_size_suggestion(item); specified_size_suggestion.has_value()) { return min(specified_size_suggestion.value(), content_size_suggestion(item)); } // otherwise, the smaller of its transferred size suggestion and its content size suggestion // if the element is replaced and its transferred size suggestion exists; if (item.box.is_replaced_box()) { if (auto transferred_size_suggestion = this->transferred_size_suggestion(item); transferred_size_suggestion.has_value()) { return min(transferred_size_suggestion.value(), content_size_suggestion(item)); } } // otherwise its content size suggestion. return content_size_suggestion(item); }(); // In all cases, the size is clamped by the maximum main size if it’s definite. if (has_main_max_size(item.box)) { return min(unclamped_size, specified_main_max_size(item.box)); } return unclamped_size; } bool FlexFormattingContext::can_determine_size_of_child() const { return true; } void FlexFormattingContext::determine_width_of_child(Box const&, AvailableSpace const&) { // NOTE: For now, we simply do nothing here. If a child context is calling up to us // and asking us to determine its width, we've already done so as part of the // flex layout algorithm. } void FlexFormattingContext::determine_height_of_child(Box const&, AvailableSpace const&) { // NOTE: For now, we simply do nothing here. If a child context is calling up to us // and asking us to determine its height, we've already done so as part of the // flex layout algorithm. } // https://drafts.csswg.org/css-flexbox-1/#algo-main-container void FlexFormattingContext::determine_main_size_of_flex_container() { // Determine the main size of the flex container using the rules of the formatting context in which it participates. // NOTE: The automatic block size of a block-level flex container is its max-content size. // FIXME: The code below doesn't know how to size absolutely positioned flex containers at all. // We just leave it alone for now and let the parent context deal with it. if (flex_container().is_absolutely_positioned()) return; // FIXME: Once all parent contexts now how to size a given child, we can remove // `can_determine_size_of_child()`. if (parent()->can_determine_size_of_child()) { if (is_row_layout()) { parent()->determine_width_of_child(flex_container(), m_available_space_for_flex_container->space); } else { parent()->determine_height_of_child(flex_container(), m_available_space_for_flex_container->space); } return; } if (is_row_layout()) { if (!flex_container().is_out_of_flow(*parent()) && m_state.get(*flex_container().containing_block()).has_definite_width()) { set_main_size(flex_container(), calculate_stretch_fit_width(flex_container(), m_available_space_for_flex_container->space.width)); } else { set_main_size(flex_container(), calculate_max_content_width(flex_container())); } } else { if (!has_definite_main_size(flex_container())) set_main_size(flex_container(), calculate_max_content_height(flex_container(), m_available_space_for_flex_container->space.width)); } } // https://www.w3.org/TR/css-flexbox-1/#algo-line-break void FlexFormattingContext::collect_flex_items_into_flex_lines() { // FIXME: Also support wrap-reverse // If the flex container is single-line, collect all the flex items into a single flex line. if (is_single_line()) { FlexLine line; for (auto& flex_item : m_flex_items) { line.items.append(&flex_item); } m_flex_lines.append(move(line)); return; } // Otherwise, starting from the first uncollected item, collect consecutive items one by one // until the first time that the next collected item would not fit into the flex container’s inner main size // (or until a forced break is encountered, see §10 Fragmenting Flex Layout). // If the very first uncollected item wouldn't fit, collect just it into the line. // For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.) // Repeat until all flex items have been collected into flex lines. FlexLine line; float line_main_size = 0; for (auto& flex_item : m_flex_items) { auto outer_hypothetical_main_size = flex_item.hypothetical_main_size + flex_item.margins.main_before + flex_item.margins.main_after + flex_item.borders.main_before + flex_item.borders.main_after + flex_item.padding.main_before + flex_item.padding.main_after; if (!line.items.is_empty() && (line_main_size + outer_hypothetical_main_size) > specified_main_size(flex_container())) { m_flex_lines.append(move(line)); line = {}; line_main_size = 0; } line.items.append(&flex_item); line_main_size += outer_hypothetical_main_size; } m_flex_lines.append(move(line)); } // https://www.w3.org/TR/css-flexbox-1/#resolve-flexible-lengths void FlexFormattingContext::resolve_flexible_lengths() { enum FlexFactor { FlexGrowFactor, FlexShrinkFactor }; FlexFactor used_flex_factor; // 6.1. Determine used flex factor for (auto& flex_line : m_flex_lines) { size_t number_of_unfrozen_items_on_line = flex_line.items.size(); float sum_of_hypothetical_main_sizes = 0; for (auto& flex_item : flex_line.items) { sum_of_hypothetical_main_sizes += (flex_item->hypothetical_main_size + flex_item->margins.main_before + flex_item->margins.main_after + flex_item->borders.main_before + flex_item->borders.main_after + flex_item->padding.main_before + flex_item->padding.main_after); } if (sum_of_hypothetical_main_sizes < specified_main_size(flex_container())) used_flex_factor = FlexFactor::FlexGrowFactor; else used_flex_factor = FlexFactor::FlexShrinkFactor; for (auto& flex_item : flex_line.items) { if (used_flex_factor == FlexFactor::FlexGrowFactor) flex_item->flex_factor = flex_item->box.computed_values().flex_grow(); else if (used_flex_factor == FlexFactor::FlexShrinkFactor) flex_item->flex_factor = flex_item->box.computed_values().flex_shrink(); } // 6.2. Size inflexible items auto freeze_item_setting_target_main_size_to_hypothetical_main_size = [&number_of_unfrozen_items_on_line](FlexItem& item) { item.target_main_size = item.hypothetical_main_size; number_of_unfrozen_items_on_line--; item.frozen = true; }; for (auto& flex_item : flex_line.items) { if (flex_item->flex_factor.has_value() && flex_item->flex_factor.value() == 0) { freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item); } else if (used_flex_factor == FlexFactor::FlexGrowFactor) { // FIXME: Spec doesn't include the == case, but we take a too basic approach to calculating the values used so this is appropriate if (flex_item->flex_base_size > flex_item->hypothetical_main_size) { freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item); } } else if (used_flex_factor == FlexFactor::FlexShrinkFactor) { if (flex_item->flex_base_size < flex_item->hypothetical_main_size) { freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item); } } } // 6.3. Calculate initial free space auto calculate_free_space = [&]() { float sum_of_items_on_line = 0; for (auto& flex_item : flex_line.items) { if (flex_item->frozen) sum_of_items_on_line += flex_item->target_main_size + flex_item->margins.main_before + flex_item->margins.main_after + flex_item->borders.main_before + flex_item->borders.main_after + flex_item->padding.main_before + flex_item->padding.main_after; else sum_of_items_on_line += flex_item->flex_base_size + flex_item->margins.main_before + flex_item->margins.main_after + flex_item->borders.main_before + flex_item->borders.main_after + flex_item->padding.main_before + flex_item->padding.main_after; } return specified_main_size(flex_container()) - sum_of_items_on_line; }; float initial_free_space = calculate_free_space(); flex_line.remaining_free_space = initial_free_space; // 6.4 Loop auto for_each_unfrozen_item = [&flex_line](auto callback) { for (auto& flex_item : flex_line.items) { if (!flex_item->frozen) callback(flex_item); } }; while (number_of_unfrozen_items_on_line > 0) { // b Calculate the remaining free space flex_line.remaining_free_space = calculate_free_space(); float sum_of_unfrozen_flex_items_flex_factors = 0; for_each_unfrozen_item([&](FlexItem* item) { sum_of_unfrozen_flex_items_flex_factors += item->flex_factor.value_or(1); }); if (sum_of_unfrozen_flex_items_flex_factors < 1) { auto intermediate_free_space = initial_free_space * sum_of_unfrozen_flex_items_flex_factors; if (AK::abs(intermediate_free_space) < AK::abs(flex_line.remaining_free_space)) flex_line.remaining_free_space = intermediate_free_space; } // c Distribute free space proportional to the flex factors if (flex_line.remaining_free_space != 0) { if (used_flex_factor == FlexFactor::FlexGrowFactor) { float sum_of_flex_grow_factor_of_unfrozen_items = sum_of_unfrozen_flex_items_flex_factors; for_each_unfrozen_item([&](FlexItem* flex_item) { float ratio = flex_item->flex_factor.value_or(1) / sum_of_flex_grow_factor_of_unfrozen_items; flex_item->target_main_size = flex_item->flex_base_size + (flex_line.remaining_free_space * ratio); }); } else if (used_flex_factor == FlexFactor::FlexShrinkFactor) { float sum_of_scaled_flex_shrink_factor_of_unfrozen_items = 0; for_each_unfrozen_item([&](FlexItem* flex_item) { flex_item->scaled_flex_shrink_factor = flex_item->flex_factor.value_or(1) * flex_item->flex_base_size; sum_of_scaled_flex_shrink_factor_of_unfrozen_items += flex_item->scaled_flex_shrink_factor; }); for_each_unfrozen_item([&](FlexItem* flex_item) { float ratio = 1.0f; if (sum_of_scaled_flex_shrink_factor_of_unfrozen_items != 0.0f) ratio = flex_item->scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factor_of_unfrozen_items; flex_item->target_main_size = flex_item->flex_base_size - (AK::abs(flex_line.remaining_free_space) * ratio); }); } } else { // This isn't spec but makes sense. for_each_unfrozen_item([&](FlexItem* flex_item) { flex_item->target_main_size = flex_item->flex_base_size; }); } // d Fix min/max violations. float adjustments = 0.0f; for_each_unfrozen_item([&](FlexItem* item) { auto min_main = has_main_min_size(item->box) ? specified_main_min_size(item->box) : automatic_minimum_size(*item); auto max_main = has_main_max_size(item->box) ? specified_main_max_size(item->box) : NumericLimits::max(); float original_target_size = item->target_main_size; if (item->target_main_size < min_main) { item->target_main_size = min_main; item->is_min_violation = true; } if (item->target_main_size > max_main) { item->target_main_size = max_main; item->is_max_violation = true; } float delta = item->target_main_size - original_target_size; adjustments += delta; }); // e Freeze over-flexed items float total_violation = adjustments; if (total_violation == 0) { for_each_unfrozen_item([&](FlexItem* item) { --number_of_unfrozen_items_on_line; item->frozen = true; }); } else if (total_violation > 0) { for_each_unfrozen_item([&](FlexItem* item) { if (item->is_min_violation) { --number_of_unfrozen_items_on_line; item->frozen = true; } }); } else if (total_violation < 0) { for_each_unfrozen_item([&](FlexItem* item) { if (item->is_max_violation) { --number_of_unfrozen_items_on_line; item->frozen = true; } }); } } // 6.5. for (auto& flex_item : flex_line.items) { flex_item->main_size = flex_item->target_main_size; set_main_size(flex_item->box, flex_item->main_size); } flex_line.remaining_free_space = calculate_free_space(); } } // https://drafts.csswg.org/css-flexbox-1/#algo-cross-item void FlexFormattingContext::determine_hypothetical_cross_size_of_item(FlexItem& item, bool resolve_percentage_min_max_sizes) { // Determine the hypothetical cross size of each item by performing layout // as if it were an in-flow block-level box with the used main size // and the given available space, treating auto as fit-content. auto const& computed_min_size = this->computed_cross_min_size(item.box); auto const& computed_max_size = this->computed_cross_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0; auto clamp_max = (!computed_max_size.is_none() && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : NumericLimits::max(); // If we have a definite cross size, this is easy! No need to perform layout, we can just use it as-is. if (has_definite_cross_size(item.box)) { // To avoid subtracting padding and border twice for `box-sizing: border-box` only min and max clamp should happen on a second pass if (resolve_percentage_min_max_sizes) { item.hypothetical_cross_size = css_clamp(item.hypothetical_cross_size, clamp_min, clamp_max); return; } float cross_size = [&]() { if (item.box.computed_values().box_sizing() == CSS::BoxSizing::BorderBox) { return max(0.0f, resolved_definite_cross_size(item) - item.padding.cross_before - item.padding.cross_after - item.borders.cross_before - item.borders.cross_after); } return resolved_definite_cross_size(item); }(); item.hypothetical_cross_size = css_clamp(cross_size, clamp_min, clamp_max); return; } if (computed_cross_size(item.box).is_auto()) { // Item has automatic cross size, layout with "fit-content" item.hypothetical_cross_size = css_clamp(calculate_fit_content_cross_size(item), clamp_min, clamp_max); return; } // For indefinite cross sizes, we perform a throwaway layout and then measure it. LayoutState throwaway_state(&m_state); auto& containing_block_state = throwaway_state.get_mutable(flex_container()); if (is_row_layout()) { containing_block_state.set_content_width(item.main_size); } else { containing_block_state.set_content_height(item.main_size); } auto& box_state = throwaway_state.get_mutable(item.box); // Item has definite main size, layout with that as the used main size. auto independent_formatting_context = create_independent_formatting_context_if_needed(throwaway_state, item.box); // NOTE: Flex items should always create an independent formatting context! VERIFY(independent_formatting_context); independent_formatting_context->run(item.box, LayoutMode::Normal, m_available_space_for_items->space); auto automatic_cross_size = is_row_layout() ? independent_formatting_context->automatic_content_height() : box_state.content_width(); item.hypothetical_cross_size = css_clamp(automatic_cross_size, clamp_min, clamp_max); } // https://www.w3.org/TR/css-flexbox-1/#algo-cross-line void FlexFormattingContext::calculate_cross_size_of_each_flex_line() { // If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex container’s inner cross size. if (is_single_line() && has_definite_cross_size(flex_container())) { m_flex_lines[0].cross_size = specified_cross_size(flex_container()); return; } // Otherwise, for each flex line: for (auto& flex_line : m_flex_lines) { // FIXME: 1. Collect all the flex items whose inline-axis is parallel to the main-axis, whose align-self is baseline, // and whose cross-axis margins are both non-auto. Find the largest of the distances between each item’s baseline // and its hypothetical outer cross-start edge, and the largest of the distances between each item’s baseline // and its hypothetical outer cross-end edge, and sum these two values. // 2. Among all the items not collected by the previous step, find the largest outer hypothetical cross size. float largest_hypothetical_cross_size = 0; for (auto& flex_item : flex_line.items) { if (largest_hypothetical_cross_size < flex_item->hypothetical_cross_size_with_margins()) largest_hypothetical_cross_size = flex_item->hypothetical_cross_size_with_margins(); } // 3. The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero. flex_line.cross_size = max(0.0f, largest_hypothetical_cross_size); } // If the flex container is single-line, then clamp the line’s cross-size to be within the container’s computed min and max cross sizes. // Note that if CSS 2.1’s definition of min/max-width/height applied more generally, this behavior would fall out automatically. if (is_single_line()) { auto const& computed_min_size = this->computed_cross_min_size(flex_container()); auto const& computed_max_size = this->computed_cross_max_size(flex_container()); auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_container()) : 0; auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_container()) : INFINITY; m_flex_lines[0].cross_size = css_clamp(m_flex_lines[0].cross_size, cross_min_size, cross_max_size); } } // https://www.w3.org/TR/css-flexbox-1/#algo-stretch void FlexFormattingContext::determine_used_cross_size_of_each_flex_item() { for (auto& flex_line : m_flex_lines) { for (auto& flex_item : flex_line.items) { // If a flex item has align-self: stretch, its computed cross size property is auto, // and neither of its cross-axis margins are auto, the used outer cross size is the used cross size of its flex line, // clamped according to the item’s used min and max cross sizes. if (alignment_for_item(flex_item->box) == CSS::AlignItems::Stretch && is_cross_auto(flex_item->box) && !flex_item->margins.cross_before_is_auto && !flex_item->margins.cross_after_is_auto) { auto unclamped_cross_size = flex_line.cross_size - flex_item->margins.cross_before - flex_item->margins.cross_after - flex_item->padding.cross_before - flex_item->padding.cross_after - flex_item->borders.cross_before - flex_item->borders.cross_after; auto const& computed_min_size = computed_cross_min_size(flex_item->box); auto const& computed_max_size = computed_cross_max_size(flex_item->box); auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_item->box) : 0; auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_item->box) : INFINITY; flex_item->cross_size = css_clamp(unclamped_cross_size, cross_min_size, cross_max_size); } else { // Otherwise, the used cross size is the item’s hypothetical cross size. flex_item->cross_size = flex_item->hypothetical_cross_size; } } } } // https://www.w3.org/TR/css-flexbox-1/#algo-main-align void FlexFormattingContext::distribute_any_remaining_free_space() { for (auto& flex_line : m_flex_lines) { // 12.1. float used_main_space = 0; size_t auto_margins = 0; for (auto& flex_item : flex_line.items) { used_main_space += flex_item->main_size; if (flex_item->margins.main_before_is_auto) ++auto_margins; if (flex_item->margins.main_after_is_auto) ++auto_margins; used_main_space += flex_item->margins.main_before + flex_item->margins.main_after + flex_item->borders.main_before + flex_item->borders.main_after + flex_item->padding.main_before + flex_item->padding.main_after; } if (flex_line.remaining_free_space > 0) { float size_per_auto_margin = flex_line.remaining_free_space / (float)auto_margins; for (auto& flex_item : flex_line.items) { if (flex_item->margins.main_before_is_auto) set_main_axis_first_margin(*flex_item, size_per_auto_margin); if (flex_item->margins.main_after_is_auto) set_main_axis_second_margin(*flex_item, size_per_auto_margin); } } else { for (auto& flex_item : flex_line.items) { if (flex_item->margins.main_before_is_auto) set_main_axis_first_margin(*flex_item, 0); if (flex_item->margins.main_after_is_auto) set_main_axis_second_margin(*flex_item, 0); } } // 12.2. float space_between_items = 0; float initial_offset = 0; auto number_of_items = flex_line.items.size(); enum class FlexRegionRenderCursor { Left, Right }; auto flex_region_render_cursor = FlexRegionRenderCursor::Left; bool justification_is_centered = false; switch (flex_container().computed_values().justify_content()) { case CSS::JustifyContent::FlexStart: if (is_direction_reverse()) { flex_region_render_cursor = FlexRegionRenderCursor::Right; initial_offset = specified_main_size(flex_container()); } else { initial_offset = 0; } break; case CSS::JustifyContent::FlexEnd: if (is_direction_reverse()) { initial_offset = 0; } else { flex_region_render_cursor = FlexRegionRenderCursor::Right; initial_offset = specified_main_size(flex_container()); } break; case CSS::JustifyContent::Center: initial_offset = (specified_main_size(flex_container()) - used_main_space) / 2.0f; justification_is_centered = true; break; case CSS::JustifyContent::SpaceBetween: space_between_items = flex_line.remaining_free_space / (number_of_items - 1); break; case CSS::JustifyContent::SpaceAround: space_between_items = flex_line.remaining_free_space / number_of_items; initial_offset = space_between_items / 2.0f; justification_is_centered = true; break; } // For reverse, we use FlexRegionRenderCursor::Right // to indicate the cursor offset is the end and render backwards // Otherwise the cursor offset is the 'start' of the region or initial offset float cursor_offset = initial_offset; auto place_item = [&](FlexItem& item, bool is_first_item, bool is_last_item) { // NOTE: For centered justifications (`center` and `space-around`) we ignore any margin // before the first item, and after the last item. float item_margin_before = item.margins.main_before; float item_margin_after = item.margins.main_after; if (justification_is_centered) { if (is_first_item) item_margin_before = 0; if (is_last_item) item_margin_after = 0; } auto amount_of_main_size_used = item.main_size + item_margin_before + item.borders.main_before + item.padding.main_before + item_margin_after + item.borders.main_after + item.padding.main_after + space_between_items; if (is_direction_reverse()) { item.main_offset = cursor_offset - item.main_size - item_margin_after - item.borders.main_after - item.padding.main_after; cursor_offset -= amount_of_main_size_used; } else if (flex_region_render_cursor == FlexRegionRenderCursor::Right) { cursor_offset -= amount_of_main_size_used; item.main_offset = cursor_offset + item_margin_before + item.borders.main_before + item.padding.main_before; } else { item.main_offset = cursor_offset + item_margin_before + item.borders.main_before + item.padding.main_before; cursor_offset += amount_of_main_size_used; } }; if (is_direction_reverse() || flex_region_render_cursor == FlexRegionRenderCursor::Right) { for (ssize_t i = flex_line.items.size() - 1; i >= 0; --i) { auto& item = flex_line.items[i]; place_item(*item, i == static_cast(flex_line.items.size()) - 1, i == 0); } } else { for (size_t i = 0; i < flex_line.items.size(); ++i) { auto& item = flex_line.items[i]; place_item(*item, i == 0, i == flex_line.items.size() - 1); } } } } void FlexFormattingContext::dump_items() const { dbgln("\033[34;1mflex-container\033[0m {}, direction: {}, current-size: {}x{}", flex_container().debug_description(), is_row_layout() ? "row" : "column", m_flex_container_state.content_width(), m_flex_container_state.content_height()); for (size_t i = 0; i < m_flex_lines.size(); ++i) { dbgln("{} flex-line #{}:", flex_container().debug_description(), i); for (size_t j = 0; j < m_flex_lines[i].items.size(); ++j) { auto& item = *m_flex_lines[i].items[j]; dbgln("{} flex-item #{}: {} (main:{}, cross:{})", flex_container().debug_description(), j, item.box.debug_description(), item.main_size, item.cross_size); } } } CSS::AlignItems FlexFormattingContext::alignment_for_item(Box const& box) const { switch (box.computed_values().align_self()) { case CSS::AlignSelf::Auto: return flex_container().computed_values().align_items(); case CSS::AlignSelf::Normal: return CSS::AlignItems::Normal; case CSS::AlignSelf::SelfStart: return CSS::AlignItems::SelfStart; case CSS::AlignSelf::SelfEnd: return CSS::AlignItems::SelfEnd; case CSS::AlignSelf::FlexStart: return CSS::AlignItems::FlexStart; case CSS::AlignSelf::FlexEnd: return CSS::AlignItems::FlexEnd; case CSS::AlignSelf::Center: return CSS::AlignItems::Center; case CSS::AlignSelf::Baseline: return CSS::AlignItems::Baseline; case CSS::AlignSelf::Stretch: return CSS::AlignItems::Stretch; case CSS::AlignSelf::Safe: return CSS::AlignItems::Safe; case CSS::AlignSelf::Unsafe: return CSS::AlignItems::Unsafe; default: VERIFY_NOT_REACHED(); } } void FlexFormattingContext::align_all_flex_items_along_the_cross_axis() { // FIXME: Take better care of margins for (auto& flex_line : m_flex_lines) { for (auto* flex_item : flex_line.items) { float half_line_size = flex_line.cross_size / 2.0f; switch (alignment_for_item(flex_item->box)) { case CSS::AlignItems::Baseline: // FIXME: Implement this // Fallthrough case CSS::AlignItems::FlexStart: case CSS::AlignItems::Stretch: flex_item->cross_offset = 0 - half_line_size + flex_item->margins.cross_before + flex_item->borders.cross_before + flex_item->padding.cross_before; break; case CSS::AlignItems::FlexEnd: flex_item->cross_offset = half_line_size - flex_item->cross_size - flex_item->margins.cross_after - flex_item->borders.cross_after - flex_item->padding.cross_after; break; case CSS::AlignItems::Center: flex_item->cross_offset = 0 - (flex_item->cross_size / 2.0f); break; default: break; } } } } // https://www.w3.org/TR/css-flexbox-1/#algo-cross-container void FlexFormattingContext::determine_flex_container_used_cross_size() { float cross_size = 0; if (has_definite_cross_size(flex_container())) { // Flex container has definite cross size: easy-peasy. cross_size = specified_cross_size(flex_container()); } else { // Flex container has indefinite cross size. auto cross_size_value = is_row_layout() ? flex_container().computed_values().height() : flex_container().computed_values().width(); if (cross_size_value.is_auto() || cross_size_value.contains_percentage()) { // If a content-based cross size is needed, use the sum of the flex lines' cross sizes. float sum_of_flex_lines_cross_sizes = 0; for (auto& flex_line : m_flex_lines) { sum_of_flex_lines_cross_sizes += flex_line.cross_size; } cross_size = sum_of_flex_lines_cross_sizes; if (cross_size_value.contains_percentage()) { // FIXME: Handle percentage values here! Right now we're just treating them as "auto" } } else { // Otherwise, resolve the indefinite size at this point. cross_size = cross_size_value.resolved(flex_container(), CSS::Length::make_px(specified_cross_size(*flex_container().containing_block()))).to_px(flex_container()); } } auto const& computed_min_size = this->computed_cross_min_size(flex_container()); auto const& computed_max_size = this->computed_cross_max_size(flex_container()); auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_container()) : 0; auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_container()) : INFINITY; set_cross_size(flex_container(), css_clamp(cross_size, cross_min_size, cross_max_size)); } // https://www.w3.org/TR/css-flexbox-1/#algo-line-align void FlexFormattingContext::align_all_flex_lines() { if (m_flex_lines.is_empty()) return; // FIXME: Support reverse float cross_size_of_flex_container = specified_cross_size(flex_container()); if (is_single_line()) { // For single-line flex containers, we only need to center the line along the cross axis. auto& flex_line = m_flex_lines[0]; float center_of_line = cross_size_of_flex_container / 2.0f; for (auto* flex_item : flex_line.items) { flex_item->cross_offset += center_of_line; } } else { float sum_of_flex_line_cross_sizes = 0; for (auto& line : m_flex_lines) sum_of_flex_line_cross_sizes += line.cross_size; float start_of_current_line = 0; switch (flex_container().computed_values().align_content()) { case CSS::AlignContent::FlexStart: start_of_current_line = 0; break; case CSS::AlignContent::FlexEnd: start_of_current_line = cross_size_of_flex_container - sum_of_flex_line_cross_sizes; break; case CSS::AlignContent::Center: start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2); break; case CSS::AlignContent::SpaceBetween: dbgln("FIXME: align-content: space-between"); break; case CSS::AlignContent::SpaceAround: dbgln("FIXME: align-content: space-around"); break; case CSS::AlignContent::Stretch: start_of_current_line = 0; break; } for (auto& flex_line : m_flex_lines) { float center_of_current_line = start_of_current_line + (flex_line.cross_size / 2); for (auto* flex_item : flex_line.items) { flex_item->cross_offset += center_of_current_line; } start_of_current_line += flex_line.cross_size; } } } void FlexFormattingContext::copy_dimensions_from_flex_items_to_boxes() { for (auto& flex_item : m_flex_items) { auto const& box = flex_item.box; auto& box_state = m_state.get_mutable(box); box_state.padding_left = box.computed_values().padding().left().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.padding_right = box.computed_values().padding().right().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.padding_top = box.computed_values().padding().top().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.padding_bottom = box.computed_values().padding().bottom().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.margin_left = box.computed_values().margin().left().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.margin_right = box.computed_values().margin().right().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.margin_top = box.computed_values().margin().top().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.margin_bottom = box.computed_values().margin().bottom().resolved(box, CSS::Length::make_px(m_flex_container_state.content_width())).to_px(box); box_state.border_left = box.computed_values().border_left().width; box_state.border_right = box.computed_values().border_right().width; box_state.border_top = box.computed_values().border_top().width; box_state.border_bottom = box.computed_values().border_bottom().width; set_main_size(box, flex_item.main_size); set_cross_size(box, flex_item.cross_size); set_offset(box, flex_item.main_offset, flex_item.cross_offset); } } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-sizes void FlexFormattingContext::determine_intrinsic_size_of_flex_container() { if (m_available_space_for_flex_container->main.is_intrinsic_sizing_constraint()) { float main_size = calculate_intrinsic_main_size_of_flex_container(); set_main_size(flex_container(), main_size); } if (m_available_space_for_items->cross.is_intrinsic_sizing_constraint()) { float cross_size = calculate_intrinsic_cross_size_of_flex_container(); set_cross_size(flex_container(), cross_size); } } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-main-sizes float FlexFormattingContext::calculate_intrinsic_main_size_of_flex_container() { // The min-content main size of a single-line flex container is calculated identically to the max-content main size, // except that the flex items’ min-content contributions are used instead of their max-content contributions. // However, for a multi-line container, it is simply the largest min-content contribution of all the non-collapsed flex items in the flex container. if (!is_single_line() && m_available_space_for_items->main.is_min_content()) { float largest_contribution = 0; for (auto const& flex_item : m_flex_items) { // FIXME: Skip collapsed flex items. largest_contribution = max(largest_contribution, calculate_main_min_content_contribution(flex_item)); } return largest_contribution; } // The max-content main size of a flex container is, fundamentally, the smallest size the flex container // can take such that when flex layout is run with that container size, each flex item ends up at least // as large as its max-content contribution, to the extent allowed by the items’ flexibility. // It is calculated, considering only non-collapsed flex items, by: // 1. For each flex item, subtract its outer flex base size from its max-content contribution size. // If that result is positive, divide it by the item’s flex grow factor if the flex grow factor is ≥ 1, // or multiply it by the flex grow factor if the flex grow factor is < 1; if the result is negative, // divide it by the item’s scaled flex shrink factor (if dividing by zero, treat the result as negative infinity). // This is the item’s desired flex fraction. for (auto& flex_item : m_flex_items) { float contribution = 0; if (m_available_space_for_items->main.is_min_content()) contribution = calculate_main_min_content_contribution(flex_item); else if (m_available_space_for_items->main.is_max_content()) contribution = calculate_main_max_content_contribution(flex_item); float outer_flex_base_size = flex_item.flex_base_size + flex_item.margins.main_before + flex_item.margins.main_after + flex_item.borders.main_before + flex_item.borders.main_after + flex_item.padding.main_before + flex_item.padding.main_after; float result = contribution - outer_flex_base_size; if (result > 0) { if (flex_item.box.computed_values().flex_grow() >= 1) { result /= flex_item.box.computed_values().flex_grow(); } else { result *= flex_item.box.computed_values().flex_grow(); } } else if (result < 0) { if (flex_item.scaled_flex_shrink_factor == 0) result = -INFINITY; else result /= flex_item.scaled_flex_shrink_factor; } flex_item.desired_flex_fraction = result; } // 2. Place all flex items into lines of infinite length. m_flex_lines.clear(); if (!m_flex_items.is_empty()) m_flex_lines.append(FlexLine {}); for (auto& flex_item : m_flex_items) { // FIXME: Honor breaking requests. m_flex_lines.last().items.append(&flex_item); } // Within each line, find the greatest (most positive) desired flex fraction among all the flex items. // This is the line’s chosen flex fraction. for (auto& flex_line : m_flex_lines) { float greatest_desired_flex_fraction = 0; float sum_of_flex_grow_factors = 0; float sum_of_flex_shrink_factors = 0; for (auto& flex_item : flex_line.items) { greatest_desired_flex_fraction = max(greatest_desired_flex_fraction, flex_item->desired_flex_fraction); sum_of_flex_grow_factors += flex_item->box.computed_values().flex_grow(); sum_of_flex_shrink_factors += flex_item->box.computed_values().flex_shrink(); } float chosen_flex_fraction = greatest_desired_flex_fraction; // 3. If the chosen flex fraction is positive, and the sum of the line’s flex grow factors is less than 1, // divide the chosen flex fraction by that sum. if (chosen_flex_fraction > 0 && sum_of_flex_grow_factors < 1) chosen_flex_fraction /= sum_of_flex_grow_factors; // If the chosen flex fraction is negative, and the sum of the line’s flex shrink factors is less than 1, // multiply the chosen flex fraction by that sum. if (chosen_flex_fraction < 0 && sum_of_flex_shrink_factors < 1) chosen_flex_fraction *= sum_of_flex_shrink_factors; flex_line.chosen_flex_fraction = chosen_flex_fraction; } auto determine_main_size = [&]() -> float { float largest_sum = 0; for (auto& flex_line : m_flex_lines) { // 4. Add each item’s flex base size to the product of its flex grow factor (scaled flex shrink factor, if shrinking) // and the chosen flex fraction, then clamp that result by the max main size floored by the min main size. float sum = 0; for (auto& flex_item : flex_line.items) { float product = 0; if (flex_item->desired_flex_fraction > 0) product = flex_line.chosen_flex_fraction * flex_item->box.computed_values().flex_grow(); else if (flex_item->desired_flex_fraction < 0) product = flex_line.chosen_flex_fraction * flex_item->scaled_flex_shrink_factor; auto result = flex_item->flex_base_size + product; auto const& computed_min_size = this->computed_main_min_size(flex_item->box); auto const& computed_max_size = this->computed_main_max_size(flex_item->box); auto clamp_min = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_main_min_size(flex_item->box) : automatic_minimum_size(*flex_item); auto clamp_max = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_main_max_size(flex_item->box) : NumericLimits::max(); result = css_clamp(result, clamp_min, clamp_max); // NOTE: The spec doesn't mention anything about the *outer* size here, but if we don't add the margin box, // flex items with non-zero padding/border/margin in the main axis end up overflowing the container. result = flex_item->add_main_margin_box_sizes(result); sum += result; } largest_sum = max(largest_sum, sum); } // 5. The flex container’s max-content size is the largest sum (among all the lines) of the afore-calculated sizes of all items within a single line. return largest_sum; }; auto main_size = determine_main_size(); set_main_size(flex_container(), main_size); return main_size; } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-cross-sizes float FlexFormattingContext::calculate_intrinsic_cross_size_of_flex_container() { // The min-content/max-content cross size of a single-line flex container // is the largest min-content contribution/max-content contribution (respectively) of its flex items. if (is_single_line()) { auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) { float largest_contribution = 0; for (auto& flex_item : m_flex_items) { float contribution = 0; if (m_available_space_for_items->cross.is_min_content()) contribution = calculate_cross_min_content_contribution(flex_item, resolve_percentage_min_max_sizes); else if (m_available_space_for_items->cross.is_max_content()) contribution = calculate_cross_max_content_contribution(flex_item, resolve_percentage_min_max_sizes); largest_contribution = max(largest_contribution, contribution); } return largest_contribution; }; auto first_pass_largest_contribution = calculate_largest_contribution(false); set_cross_size(flex_container(), first_pass_largest_contribution); auto second_pass_largest_contribution = calculate_largest_contribution(true); return second_pass_largest_contribution; } if (is_row_layout()) { // row multi-line flex container cross-size // The min-content/max-content cross size is the sum of the flex line cross sizes resulting from // sizing the flex container under a cross-axis min-content constraint/max-content constraint (respectively). // NOTE: We fall through to the ad-hoc section below. } else { // column multi-line flex container cross-size // The min-content cross size is the largest min-content contribution among all of its flex items. if (m_available_space_for_items->cross.is_min_content()) { auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) { float largest_contribution = 0; for (auto& flex_item : m_flex_items) { float contribution = calculate_cross_min_content_contribution(flex_item, resolve_percentage_min_max_sizes); largest_contribution = max(largest_contribution, contribution); } return largest_contribution; }; auto first_pass_largest_contribution = calculate_largest_contribution(false); set_cross_size(flex_container(), first_pass_largest_contribution); auto second_pass_largest_contribution = calculate_largest_contribution(true); return second_pass_largest_contribution; } // The max-content cross size is the sum of the flex line cross sizes resulting from // sizing the flex container under a cross-axis max-content constraint, // using the largest max-content cross-size contribution among the flex items // as the available space in the cross axis for each of the flex items during layout. // NOTE: We fall through to the ad-hoc section below. } // HACK: We run steps 5, 7, 9 and 11 from the main algorithm. This gives us *some* cross size information to work with. m_flex_lines.clear(); collect_flex_items_into_flex_lines(); for (auto& flex_item : m_flex_items) { determine_hypothetical_cross_size_of_item(flex_item, false); } calculate_cross_size_of_each_flex_line(); determine_used_cross_size_of_each_flex_item(); float sum_of_flex_line_cross_sizes = 0; for (auto& flex_line : m_flex_lines) { sum_of_flex_line_cross_sizes += flex_line.cross_size; } return sum_of_flex_line_cross_sizes; } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions float FlexFormattingContext::calculate_main_min_content_contribution(FlexItem const& item) const { // The main-size min-content contribution of a flex item is // the larger of its outer min-content size and outer preferred size if that is not auto, // clamped by its min/max main size. auto larger_size = [&] { auto inner_min_content_size = calculate_min_content_main_size(item); if (computed_main_size(item.box).is_auto()) return inner_min_content_size; auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box)); return max(inner_min_content_size, inner_preferred_size); }(); auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item); auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : NumericLimits::max(); auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max); return item.add_main_margin_box_sizes(clamped_inner_size); } // https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions float FlexFormattingContext::calculate_main_max_content_contribution(FlexItem const& item) const { // The main-size max-content contribution of a flex item is // the larger of its outer max-content size and outer preferred size if that is not auto, // clamped by its min/max main size. auto larger_size = [&] { auto inner_max_content_size = calculate_max_content_main_size(item); if (computed_main_size(item.box).is_auto()) return inner_max_content_size; auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box)); return max(inner_max_content_size, inner_preferred_size); }(); auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item); auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : NumericLimits::max(); auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max); return item.add_main_margin_box_sizes(clamped_inner_size); } bool FlexFormattingContext::should_treat_main_size_as_auto(Box const& box) const { if (is_row_layout()) return should_treat_width_as_auto(box, m_available_space_for_items->space); return should_treat_height_as_auto(box, m_available_space_for_items->space); } bool FlexFormattingContext::should_treat_cross_size_as_auto(Box const& box) const { if (is_row_layout()) return should_treat_height_as_auto(box, m_available_space_for_items->space); return should_treat_width_as_auto(box, m_available_space_for_items->space); } float FlexFormattingContext::calculate_cross_min_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const { auto size = [&] { if (should_treat_cross_size_as_auto(item.box)) return calculate_min_content_cross_size(item); return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box)); }(); auto const& computed_min_size = this->computed_cross_min_size(item.box); auto const& computed_max_size = this->computed_cross_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0; auto clamp_max = (!computed_max_size.is_none() && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : NumericLimits::max(); auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max); return item.add_cross_margin_box_sizes(clamped_inner_size); } float FlexFormattingContext::calculate_cross_max_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const { auto size = [&] { if (should_treat_cross_size_as_auto(item.box)) return calculate_max_content_cross_size(item); return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box)); }(); auto const& computed_min_size = this->computed_cross_min_size(item.box); auto const& computed_max_size = this->computed_cross_max_size(item.box); auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0; auto clamp_max = (!computed_max_size.is_none() && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : NumericLimits::max(); auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max); return item.add_cross_margin_box_sizes(clamped_inner_size); } float FlexFormattingContext::calculate_min_content_main_size(FlexItem const& item) const { return is_row_layout() ? calculate_min_content_width(item.box) : calculate_min_content_height(item.box, m_available_space_for_items->space.width); } float FlexFormattingContext::calculate_fit_content_main_size(FlexItem const& item) const { return is_row_layout() ? calculate_fit_content_width(item.box, m_available_space_for_items->space) : calculate_fit_content_height(item.box, m_available_space_for_items->space); } float FlexFormattingContext::calculate_fit_content_cross_size(FlexItem const& item) const { return !is_row_layout() ? calculate_fit_content_width(item.box, m_available_space_for_items->space) : calculate_fit_content_height(item.box, m_available_space_for_items->space); } float FlexFormattingContext::calculate_max_content_main_size(FlexItem const& item) const { return is_row_layout() ? calculate_max_content_width(item.box) : calculate_max_content_height(item.box, m_available_space_for_items->space.width); } float FlexFormattingContext::calculate_min_content_cross_size(FlexItem const& item) const { return is_row_layout() ? calculate_min_content_height(item.box, m_available_space_for_items->space.width) : calculate_min_content_width(item.box); } float FlexFormattingContext::calculate_max_content_cross_size(FlexItem const& item) const { return is_row_layout() ? calculate_max_content_height(item.box, m_available_space_for_items->space.width) : calculate_max_content_width(item.box); } // https://drafts.csswg.org/css-flexbox-1/#stretched bool FlexFormattingContext::flex_item_is_stretched(FlexItem const& item) const { auto alignment = alignment_for_item(item.box); if (alignment != CSS::AlignItems::Stretch) return false; // If the cross size property of the flex item computes to auto, and neither of the cross-axis margins are auto, the flex item is stretched. auto const& computed_cross_size = is_row_layout() ? item.box.computed_values().height() : item.box.computed_values().width(); return computed_cross_size.is_auto() && !item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto; } CSS::Size const& FlexFormattingContext::computed_main_size(Box const& box) const { return is_row_layout() ? box.computed_values().width() : box.computed_values().height(); } CSS::Size const& FlexFormattingContext::computed_main_min_size(Box const& box) const { return is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height(); } CSS::Size const& FlexFormattingContext::computed_main_max_size(Box const& box) const { return is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height(); } CSS::Size const& FlexFormattingContext::computed_cross_size(Box const& box) const { return !is_row_layout() ? box.computed_values().width() : box.computed_values().height(); } CSS::Size const& FlexFormattingContext::computed_cross_min_size(Box const& box) const { return !is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height(); } CSS::Size const& FlexFormattingContext::computed_cross_max_size(Box const& box) const { return !is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height(); } // https://drafts.csswg.org/css-flexbox-1/#algo-cross-margins void FlexFormattingContext::resolve_cross_axis_auto_margins() { for (auto& line : m_flex_lines) { for (auto& item : line.items) { // If a flex item has auto cross-axis margins: if (!item->margins.cross_before_is_auto && !item->margins.cross_after_is_auto) continue; // If its outer cross size (treating those auto margins as zero) is less than the cross size of its flex line, // distribute the difference in those sizes equally to the auto margins. auto outer_cross_size = item->cross_size + item->padding.cross_before + item->padding.cross_after + item->borders.cross_before + item->borders.cross_after; if (outer_cross_size < line.cross_size) { float remainder = line.cross_size - outer_cross_size; if (item->margins.cross_before_is_auto && item->margins.cross_after_is_auto) { item->margins.cross_before = remainder / 2.0f; item->margins.cross_after = remainder / 2.0f; } else if (item->margins.cross_before_is_auto) { item->margins.cross_before = remainder; } else { item->margins.cross_after = remainder; } } else { // FIXME: Otherwise, if the block-start or inline-start margin (whichever is in the cross axis) is auto, set it to zero. // Set the opposite margin so that the outer cross size of the item equals the cross size of its flex line. } } } } // https://drafts.csswg.org/css-flexbox-1/#algo-line-stretch void FlexFormattingContext::handle_align_content_stretch() { // If the flex container has a definite cross size, if (!has_definite_cross_size(flex_container())) return; // align-content is stretch, if (flex_container().computed_values().align_content() != CSS::AlignContent::Stretch) return; // and the sum of the flex lines' cross sizes is less than the flex container’s inner cross size, float sum_of_flex_line_cross_sizes = 0; for (auto& line : m_flex_lines) sum_of_flex_line_cross_sizes += line.cross_size; if (sum_of_flex_line_cross_sizes >= specified_cross_size(flex_container())) return; // increase the cross size of each flex line by equal amounts // such that the sum of their cross sizes exactly equals the flex container’s inner cross size. float remainder = specified_cross_size(flex_container()) - sum_of_flex_line_cross_sizes; float extra_per_line = remainder / m_flex_lines.size(); for (auto& line : m_flex_lines) line.cross_size += extra_per_line; } // https://drafts.csswg.org/css-flexbox-1/#abspos-items Gfx::FloatPoint FlexFormattingContext::calculate_static_position(Box const& box) const { // The cross-axis edges of the static-position rectangle of an absolutely-positioned child // of a flex container are the content edges of the flex container. float cross_offset = 0; float half_line_size = specified_cross_size(flex_container()) / 2; auto const& box_state = m_state.get(box); float cross_margin_before = is_row_layout() ? box_state.margin_top : box_state.margin_left; float cross_margin_after = is_row_layout() ? box_state.margin_bottom : box_state.margin_right; float cross_border_before = is_row_layout() ? box_state.border_top : box_state.border_left; float cross_border_after = is_row_layout() ? box_state.border_bottom : box_state.border_right; float cross_padding_before = is_row_layout() ? box_state.padding_top : box_state.padding_left; float cross_padding_after = is_row_layout() ? box_state.padding_bottom : box_state.padding_right; switch (alignment_for_item(box)) { case CSS::AlignItems::Baseline: // FIXME: Implement this // Fallthrough case CSS::AlignItems::FlexStart: case CSS::AlignItems::Stretch: cross_offset = 0 - half_line_size + cross_margin_before + cross_border_before + cross_padding_before; break; case CSS::AlignItems::FlexEnd: cross_offset = half_line_size - specified_cross_size(box) - cross_margin_after - cross_border_after - cross_padding_after; break; case CSS::AlignItems::Center: cross_offset = 0 - (specified_cross_size(box) / 2.0f); break; default: break; } cross_offset += specified_cross_size(flex_container()) / 2.0f; // The main-axis edges of the static-position rectangle are where the margin edges of the child // would be positioned if it were the sole flex item in the flex container, // assuming both the child and the flex container were fixed-size boxes of their used size. // (For this purpose, auto margins are treated as zero. bool pack_from_end = true; float main_offset = 0; switch (flex_container().computed_values().justify_content()) { case CSS::JustifyContent::FlexStart: if (is_direction_reverse()) { pack_from_end = false; main_offset = specified_main_size(flex_container()); } else { main_offset = 0; } break; case CSS::JustifyContent::FlexEnd: if (is_direction_reverse()) { main_offset = 0; } else { pack_from_end = false; main_offset = specified_main_size(flex_container()); } break; case CSS::JustifyContent::SpaceBetween: main_offset = 0; break; case CSS::JustifyContent::Center: case CSS::JustifyContent::SpaceAround: main_offset = specified_main_size(flex_container()) / 2.0f - specified_main_size(box) / 2.0f; break; } // NOTE: Next, we add the flex container's padding since abspos boxes are placed relative to the padding edge // of their abspos containing block. if (pack_from_end) { main_offset += is_row_layout() ? m_flex_container_state.padding_left : m_flex_container_state.padding_top; } else { main_offset += is_row_layout() ? m_flex_container_state.padding_right : m_flex_container_state.padding_bottom; } if (!pack_from_end) main_offset += specified_main_size(flex_container()) - specified_main_size(box); auto static_position_offset = is_row_layout() ? Gfx::FloatPoint { main_offset, cross_offset } : Gfx::FloatPoint { cross_offset, main_offset }; auto absolute_position_of_flex_container = absolute_content_rect(flex_container(), m_state).location(); auto absolute_position_of_abspos_containing_block = absolute_content_rect(*box.containing_block(), m_state).location(); auto diff = absolute_position_of_flex_container - absolute_position_of_abspos_containing_block; return static_position_offset + diff; } }