/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #define VM_GUARD_PAGES namespace Kernel::Memory { VirtualRangeAllocator::VirtualRangeAllocator() : m_total_range({}, 0) { } void VirtualRangeAllocator::initialize_with_range(VirtualAddress base, size_t size) { m_total_range = { base, size }; m_available_ranges.insert(base.get(), VirtualRange { base, size }); } void VirtualRangeAllocator::initialize_from_parent(VirtualRangeAllocator const& parent_allocator) { SpinlockLocker lock(parent_allocator.m_lock); m_total_range = parent_allocator.m_total_range; m_available_ranges.clear(); for (auto it = parent_allocator.m_available_ranges.begin(); !it.is_end(); ++it) { m_available_ranges.insert(it.key(), *it); } } void VirtualRangeAllocator::dump() const { VERIFY(m_lock.is_locked()); dbgln("VirtualRangeAllocator({})", this); for (auto& range : m_available_ranges) { dbgln(" {:x} -> {:x}", range.base().get(), range.end().get() - 1); } } void VirtualRangeAllocator::carve_at_iterator(auto& it, VirtualRange const& range) { VERIFY(m_lock.is_locked()); auto remaining_parts = (*it).carve(range); VERIFY(remaining_parts.size() >= 1); VERIFY(m_total_range.contains(remaining_parts[0])); m_available_ranges.remove(it.key()); m_available_ranges.insert(remaining_parts[0].base().get(), remaining_parts[0]); if (remaining_parts.size() == 2) { VERIFY(m_total_range.contains(remaining_parts[1])); m_available_ranges.insert(remaining_parts[1].base().get(), remaining_parts[1]); } } Optional VirtualRangeAllocator::allocate_randomized(size_t size, size_t alignment) { if (!size) return {}; VERIFY((size % PAGE_SIZE) == 0); VERIFY((alignment % PAGE_SIZE) == 0); // FIXME: I'm sure there's a smarter way to do this. static constexpr size_t maximum_randomization_attempts = 1000; for (size_t i = 0; i < maximum_randomization_attempts; ++i) { VirtualAddress random_address { round_up_to_power_of_two(get_fast_random() % m_total_range.end().get(), alignment) }; if (!m_total_range.contains(random_address, size)) continue; auto range = allocate_specific(random_address, size); if (range.has_value()) return range; } return allocate_anywhere(size, alignment); } Optional VirtualRangeAllocator::allocate_anywhere(size_t size, size_t alignment) { if (!size) return {}; VERIFY((size % PAGE_SIZE) == 0); VERIFY((alignment % PAGE_SIZE) == 0); #ifdef VM_GUARD_PAGES // NOTE: We pad VM allocations with a guard page on each side. if (Checked::addition_would_overflow(size, PAGE_SIZE * 2)) return {}; size_t effective_size = size + PAGE_SIZE * 2; size_t offset_from_effective_base = PAGE_SIZE; #else size_t effective_size = size; size_t offset_from_effective_base = 0; #endif if (Checked::addition_would_overflow(effective_size, alignment)) return {}; SpinlockLocker lock(m_lock); for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) { auto& available_range = *it; // FIXME: This check is probably excluding some valid candidates when using a large alignment. if (available_range.size() < (effective_size + alignment)) continue; FlatPtr initial_base = available_range.base().offset(offset_from_effective_base).get(); FlatPtr aligned_base = round_up_to_power_of_two(initial_base, alignment); VirtualRange const allocated_range(VirtualAddress(aligned_base), size); VERIFY(m_total_range.contains(allocated_range)); if (available_range == allocated_range) { m_available_ranges.remove(it.key()); return allocated_range; } carve_at_iterator(it, allocated_range); return allocated_range; } dmesgln("VirtualRangeAllocator: Failed to allocate anywhere: size={}, alignment={}", size, alignment); return {}; } Optional VirtualRangeAllocator::allocate_specific(VirtualAddress base, size_t size) { if (!size) return {}; VERIFY(base.is_page_aligned()); VERIFY((size % PAGE_SIZE) == 0); VirtualRange const allocated_range(base, size); if (!m_total_range.contains(allocated_range)) { return {}; } SpinlockLocker lock(m_lock); for (auto it = m_available_ranges.begin(); !it.is_end(); ++it) { auto& available_range = *it; if (!available_range.contains(base, size)) continue; if (available_range == allocated_range) { m_available_ranges.remove(it.key()); return allocated_range; } carve_at_iterator(it, allocated_range); return allocated_range; } return {}; } void VirtualRangeAllocator::deallocate(VirtualRange const& range) { SpinlockLocker lock(m_lock); VERIFY(m_total_range.contains(range)); VERIFY(range.size()); VERIFY((range.size() % PAGE_SIZE) == 0); VERIFY(range.base() < range.end()); VERIFY(!m_available_ranges.is_empty()); VirtualRange merged_range = range; { // Try merging with preceding range. auto* preceding_range = m_available_ranges.find_largest_not_above(range.base().get()); if (preceding_range && preceding_range->end() == range.base()) { preceding_range->m_size += range.size(); merged_range = *preceding_range; } else { m_available_ranges.insert(range.base().get(), range); } } { // Try merging with following range. auto* following_range = m_available_ranges.find_largest_not_above(range.end().get()); if (following_range && merged_range.end() == following_range->base()) { auto* existing_range = m_available_ranges.find_largest_not_above(range.base().get()); VERIFY(existing_range->base() == merged_range.base()); existing_range->m_size += following_range->size(); m_available_ranges.remove(following_range->base().get()); } } } }