#include #include #include //#define VRA_DEBUG RangeAllocator::RangeAllocator(VirtualAddress base, size_t size) { m_available_ranges.append({ base, size }); #ifdef VRA_DEBUG dump(); #endif } RangeAllocator::RangeAllocator(const RangeAllocator& parent_allocator) : m_available_ranges(parent_allocator.m_available_ranges) { } RangeAllocator::~RangeAllocator() { } void RangeAllocator::dump() const { dbgprintf("RangeAllocator{%p}\n", this); for (auto& range : m_available_ranges) { dbgprintf(" %x -> %x\n", range.base().get(), range.end().get() - 1); } } Vector Range::carve(const Range& taken) { Vector parts; if (taken == *this) return {}; if (taken.base() > base()) parts.append({ base(), taken.base().get() - base().get() }); if (taken.end() < end()) parts.append({ taken.end(), end().get() - taken.end().get() }); #ifdef VRA_DEBUG dbgprintf("VRA: carve: take %x-%x from %x-%x\n", taken.base().get(), taken.end().get() - 1, base().get(), end().get() - 1); for (int i = 0; i < parts.size(); ++i) dbgprintf(" %x-%x\n", parts[i].base().get(), parts[i].end().get() - 1); #endif return parts; } void RangeAllocator::carve_at_index(int index, const Range& range) { auto remaining_parts = m_available_ranges[index].carve(range); ASSERT(remaining_parts.size() >= 1); m_available_ranges[index] = remaining_parts[0]; if (remaining_parts.size() == 2) m_available_ranges.insert(index + 1, move(remaining_parts[1])); } Range RangeAllocator::allocate_anywhere(size_t size) { for (int i = 0; i < m_available_ranges.size(); ++i) { auto& available_range = m_available_ranges[i]; if (available_range.size() < size) continue; Range allocated_range(available_range.base(), size); if (available_range.size() == size) { #ifdef VRA_DEBUG dbgprintf("VRA: Allocated perfect-fit anywhere(%u): %x\n", size, allocated_range.base().get()); #endif m_available_ranges.remove(i); return allocated_range; } carve_at_index(i, allocated_range); #ifdef VRA_DEBUG dbgprintf("VRA: Allocated anywhere(%u): %x\n", size, allocated_range.base().get()); dump(); #endif return allocated_range; } kprintf("VRA: Failed to allocate anywhere: %u\n", size); return {}; } Range RangeAllocator::allocate_specific(VirtualAddress base, size_t size) { Range allocated_range(base, size); for (int i = 0; i < m_available_ranges.size(); ++i) { auto& available_range = m_available_ranges[i]; if (!available_range.contains(base, size)) continue; if (available_range == allocated_range) { m_available_ranges.remove(i); return allocated_range; } carve_at_index(i, allocated_range); #ifdef VRA_DEBUG dbgprintf("VRA: Allocated specific(%u): %x\n", size, available_range.base().get()); dump(); #endif return allocated_range; } kprintf("VRA: Failed to allocate specific range: %x(%u)\n", base.get(), size); return {}; } void RangeAllocator::deallocate(Range range) { #ifdef VRA_DEBUG dbgprintf("VRA: Deallocate: %x(%u)\n", range.base().get(), range.size()); dump(); #endif for (auto& available_range : m_available_ranges) { if (available_range.end() == range.base()) { available_range.m_size += range.size(); goto sort_and_merge; } } m_available_ranges.append(range); sort_and_merge: // FIXME: We don't have to sort if we insert at the right position immediately. quick_sort(m_available_ranges.begin(), m_available_ranges.end(), [](auto& a, auto& b) { return a.base() < b.base(); }); Vector merged_ranges; merged_ranges.ensure_capacity(m_available_ranges.size()); for (auto& range : m_available_ranges) { if (merged_ranges.is_empty()) { merged_ranges.append(range); continue; } if (range.base() == merged_ranges.last().end()) { merged_ranges.last().m_size += range.size(); continue; } merged_ranges.append(range); } m_available_ranges = move(merged_ranges); #ifdef VRA_DEBUG dbgprintf("VRA: After deallocate\n"); dump(); #endif }