/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Defined in the linker script typedef void (*ctor_func_t)(); extern ctor_func_t start_heap_ctors[]; extern ctor_func_t end_heap_ctors[]; extern ctor_func_t start_ctors[]; extern ctor_func_t end_ctors[]; extern size_t __stack_chk_guard; READONLY_AFTER_INIT size_t __stack_chk_guard; extern "C" u8 start_of_safemem_text[]; extern "C" u8 end_of_safemem_text[]; extern "C" u8 start_of_safemem_atomic_text[]; extern "C" u8 end_of_safemem_atomic_text[]; extern "C" u8 end_of_kernel_image[]; multiboot_module_entry_t multiboot_copy_boot_modules_array[16]; size_t multiboot_copy_boot_modules_count; READONLY_AFTER_INIT bool g_in_early_boot; namespace Kernel { [[noreturn]] static void init_stage2(void*); static void setup_serial_debug(); // boot.S expects these functions to exactly have the following signatures. // We declare them here to ensure their signatures don't accidentally change. extern "C" void init_finished(u32 cpu) __attribute__((used)); extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info); extern "C" [[noreturn]] void init(BootInfo const&); READONLY_AFTER_INIT VirtualConsole* tty0; static Processor s_bsp_processor; // global but let's keep it "private" // SerenityOS Kernel C++ entry point :^) // // This is where C++ execution begins, after boot.S transfers control here. // // The purpose of init() is to start multi-tasking. It does the bare minimum // amount of work needed to start the scheduler. // // Once multi-tasking is ready, we spawn a new thread that starts in the // init_stage2() function. Initialization continues there. extern "C" { READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image; READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image; READONLY_AFTER_INIT size_t physical_to_virtual_offset; READONLY_AFTER_INIT FlatPtr kernel_mapping_base; READONLY_AFTER_INIT FlatPtr kernel_load_base; #if ARCH(X86_64) READONLY_AFTER_INIT PhysicalAddress boot_pml4t; #endif READONLY_AFTER_INIT PhysicalAddress boot_pdpt; READONLY_AFTER_INIT PhysicalAddress boot_pd0; READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel; READONLY_AFTER_INIT PageTableEntry* boot_pd_kernel_pt1023; READONLY_AFTER_INIT const char* kernel_cmdline; READONLY_AFTER_INIT u32 multiboot_flags; READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map; READONLY_AFTER_INIT size_t multiboot_memory_map_count; READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules; READONLY_AFTER_INIT size_t multiboot_modules_count; READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr; READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch; READONLY_AFTER_INIT u32 multiboot_framebuffer_width; READONLY_AFTER_INIT u32 multiboot_framebuffer_height; READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp; READONLY_AFTER_INIT u8 multiboot_framebuffer_type; } extern "C" [[noreturn]] UNMAP_AFTER_INIT void init(BootInfo const& boot_info) { g_in_early_boot = true; start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image }; end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image }; physical_to_virtual_offset = boot_info.physical_to_virtual_offset; kernel_mapping_base = boot_info.kernel_mapping_base; kernel_load_base = boot_info.kernel_load_base; #if ARCH(X86_64) gdt64ptr = boot_info.gdt64ptr; code64_sel = boot_info.code64_sel; boot_pml4t = PhysicalAddress { boot_info.boot_pml4t }; #endif boot_pdpt = PhysicalAddress { boot_info.boot_pdpt }; boot_pd0 = PhysicalAddress { boot_info.boot_pd0 }; boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel }; boot_pd_kernel_pt1023 = (PageTableEntry*)boot_info.boot_pd_kernel_pt1023; kernel_cmdline = (char const*)boot_info.kernel_cmdline; multiboot_flags = boot_info.multiboot_flags; multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map; multiboot_memory_map_count = boot_info.multiboot_memory_map_count; multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules; multiboot_modules_count = boot_info.multiboot_modules_count; multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr }; multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch; multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width; multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height; multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp; multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type; setup_serial_debug(); // We need to copy the command line before kmalloc is initialized, // as it may overwrite parts of multiboot! CommandLine::early_initialize(kernel_cmdline); memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t)); multiboot_copy_boot_modules_count = multiboot_modules_count; s_bsp_processor.early_initialize(0); // Invoke the constructors needed for the kernel heap for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++) (*ctor)(); kmalloc_init(); slab_alloc_init(); load_kernel_symbol_table(); ConsoleDevice::initialize(); s_bsp_processor.initialize(0); CommandLine::initialize(); Memory::MemoryManager::initialize(0); // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections. VERIFY(+start_of_safemem_text != +end_of_safemem_text); VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text); // Invoke all static global constructors in the kernel. // Note that we want to do this as early as possible. for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++) (*ctor)(); APIC::initialize(); InterruptManagement::initialize(); ACPI::initialize(); // Initialize TimeManagement before using randomness! TimeManagement::initialize(0); __stack_chk_guard = get_fast_random(); ProcFSComponentRegistry::initialize(); Process::initialize(); Scheduler::initialize(); dmesgln("Starting SerenityOS..."); { RefPtr init_stage2_thread; Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No); // We need to make sure we drop the reference for init_stage2_thread // before calling into Scheduler::start, otherwise we will have a // dangling Thread that never gets cleaned up } Scheduler::start(); VERIFY_NOT_REACHED(); } // // This is where C++ execution begins for APs, after boot.S transfers control here. // // The purpose of init_ap() is to initialize APs for multi-tasking. // extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info) { processor_info->early_initialize(cpu); processor_info->initialize(cpu); Memory::MemoryManager::initialize(cpu); Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu)); Scheduler::start(); VERIFY_NOT_REACHED(); } // // This method is called once a CPU enters the scheduler and its idle thread // At this point the initial boot stack can be freed // extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu) { if (cpu == 0) { // TODO: we can reuse the boot stack, maybe for kmalloc()? } else { APIC::the().init_finished(cpu); TimeManagement::initialize(cpu); } } void init_stage2(void*) { // This is a little bit of a hack. We can't register our process at the time we're // creating it, but we need to be registered otherwise finalization won't be happy. // The colonel process gets away without having to do this because it never exits. Process::register_new(*Process::current()); WorkQueue::initialize(); if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) { // We can't start the APs until we have a scheduler up and running. // We need to be able to process ICI messages, otherwise another // core may send too many and end up deadlocking once the pool is // exhausted APIC::the().boot_aps(); } // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging SysFSComponentRegistry::initialize(); PCI::initialize(); PCISerialDevice::detect(); VirtualFileSystem::initialize(); NullDevice::initialize(); if (!get_serial_debug()) (void)SerialDevice::must_create(0).leak_ref(); (void)SerialDevice::must_create(1).leak_ref(); (void)SerialDevice::must_create(2).leak_ref(); (void)SerialDevice::must_create(3).leak_ref(); VMWareBackdoor::the(); // don't wait until first mouse packet HIDManagement::initialize(); GraphicsManagement::the().initialize(); ConsoleManagement::the().initialize(); SyncTask::spawn(); FinalizerTask::spawn(); auto boot_profiling = kernel_command_line().is_boot_profiling_enabled(); USB::USBManagement::initialize(); BIOSSysFSDirectory::initialize(); ACPI::ACPISysFSDirectory::initialize(); VirtIO::detect(); NetworkingManagement::the().initialize(); Syscall::initialize(); #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION (void)KCOVDevice::must_create().leak_ref(); #endif (void)MemoryDevice::must_create().leak_ref(); (void)ZeroDevice::must_create().leak_ref(); (void)FullDevice::must_create().leak_ref(); (void)RandomDevice::must_create().leak_ref(); PTYMultiplexer::initialize(); SB16::detect(); StorageManagement::initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio()); if (!VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem())) { PANIC("VirtualFileSystem::mount_root failed"); } // Switch out of early boot mode. g_in_early_boot = false; // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point. MM.protect_readonly_after_init_memory(); // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point. MM.unmap_text_after_init(); // NOTE: Everything in the .ksyms section becomes inaccessible after this point. MM.unmap_ksyms_after_init(); int error; // FIXME: It would be nicer to set the mode from userspace. // FIXME: It would be smarter to not hardcode that the first tty is the only graphical one ConsoleManagement::the().first_tty()->set_graphical(GraphicsManagement::the().framebuffer_devices_exist()); RefPtr thread; auto userspace_init = kernel_command_line().userspace_init(); auto init_args = kernel_command_line().userspace_init_args(); Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, move(init_args), {}, tty0); if (error != 0) { PANIC("init_stage2: Error spawning SystemServer: {}", error); } thread->set_priority(THREAD_PRIORITY_HIGH); if (boot_profiling) { dbgln("Starting full system boot profiling"); MutexLocker mutex_locker(Process::current()->big_lock()); auto result = Process::current()->sys$profiling_enable(-1, ~0ull); VERIFY(!result.is_error()); } NetworkTask::spawn(); Process::current()->sys$exit(0); VERIFY_NOT_REACHED(); } UNMAP_AFTER_INIT void setup_serial_debug() { // serial_debug will output all the dbgln() data to COM1 at // 8-N-1 57600 baud. this is particularly useful for debugging the boot // process on live hardware. if (StringView(kernel_cmdline).contains("serial_debug")) { set_serial_debug(true); } } // Define some Itanium C++ ABI methods to stop the linker from complaining. // If we actually call these something has gone horribly wrong void* __dso_handle __attribute__((visibility("hidden"))); }