/* * Copyright (c) 2020, the SerenityOS developers * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include namespace Kernel { #define APIC_TIMER_MEASURE_CPU_CLOCK UNMAP_AFTER_INIT APICTimer* APICTimer::initialize(u8 interrupt_number, HardwareTimerBase& calibration_source) { auto timer = adopt(*new APICTimer(interrupt_number, nullptr)); timer->register_interrupt_handler(); if (!timer->calibrate(calibration_source)) { return nullptr; } return &timer.leak_ref(); } UNMAP_AFTER_INIT APICTimer::APICTimer(u8 interrupt_number, Function callback) : HardwareTimer(interrupt_number, move(callback)) { disable_remap(); } UNMAP_AFTER_INIT bool APICTimer::calibrate(HardwareTimerBase& calibration_source) { VERIFY_INTERRUPTS_DISABLED(); dmesgln("APICTimer: Using {} as calibration source", calibration_source.model()); auto& apic = APIC::the(); #ifdef APIC_TIMER_MEASURE_CPU_CLOCK bool supports_tsc = Processor::current().has_feature(CPUFeature::TSC); #endif // temporarily replace the timer callbacks const size_t ticks_in_100ms = calibration_source.ticks_per_second() / 10; Atomic calibration_ticks = 0; #ifdef APIC_TIMER_MEASURE_CPU_CLOCK volatile u64 start_tsc = 0, end_tsc = 0; #endif volatile u64 start_reference = 0, end_reference = 0; volatile u32 start_apic_count = 0, end_apic_count = 0; bool query_reference = calibration_source.can_query_raw(); auto original_source_callback = calibration_source.set_callback([&](const RegisterState&) { u32 current_timer_count = apic.get_timer_current_count(); #ifdef APIC_TIMER_MEASURE_CPU_CLOCK u64 current_tsc = supports_tsc ? read_tsc() : 0; #endif u64 current_reference = query_reference ? calibration_source.current_raw() : 0; auto prev_tick = calibration_ticks.fetch_add(1); if (prev_tick == 0) { #ifdef APIC_TIMER_MEASURE_CPU_CLOCK start_tsc = current_tsc; #endif start_apic_count = current_timer_count; start_reference = current_reference; } else if (prev_tick + 1 == ticks_in_100ms + 1) { #ifdef APIC_TIMER_MEASURE_CPU_CLOCK end_tsc = current_tsc; #endif end_apic_count = current_timer_count; end_reference = current_reference; } }); // Setup a counter that should be much longer than our calibration time. // We don't want the APIC timer to actually fire. We do however want the // calbibration_source timer to fire so that we can read the current // tick count from the APIC timer auto original_callback = set_callback([&](const RegisterState&) { // TODO: How should we handle this? PANIC("APICTimer: Timer fired during calibration!"); }); apic.setup_local_timer(0xffffffff, APIC::TimerMode::Periodic, true); sti(); // Loop for about 100 ms while (calibration_ticks.load() <= ticks_in_100ms) ; cli(); // Restore timer callbacks calibration_source.set_callback(move(original_source_callback)); set_callback(move(original_callback)); disable_local_timer(); if (query_reference) { u64 one_tick_ns = calibration_source.raw_to_ns((end_reference - start_reference) / ticks_in_100ms); m_frequency = (u32)(1000000000ull / one_tick_ns); dmesgln("APICTimer: Ticks per second: {} ({}.{}ms)", m_frequency, one_tick_ns / 1000000, one_tick_ns % 1000000); } else { // For now, assume the frequency is exactly the same m_frequency = calibration_source.ticks_per_second(); dmesgln("APICTimer: Ticks per second: {} (assume same frequency as reference clock)", m_frequency); } auto delta_apic_count = start_apic_count - end_apic_count; // The APIC current count register decrements! m_timer_period = (delta_apic_count * apic.get_timer_divisor()) / ticks_in_100ms; u64 apic_freq = delta_apic_count * apic.get_timer_divisor() * 10; dmesgln("APICTimer: Bus clock speed: {}.{} MHz", apic_freq / 1000000, apic_freq % 1000000); if (apic_freq < 1000000) { dmesgln("APICTimer: Frequency too slow!"); return false; } #ifdef APIC_TIMER_MEASURE_CPU_CLOCK if (supports_tsc) { auto delta_tsc = (end_tsc - start_tsc) * 10; dmesgln("APICTimer: CPU clock speed: {}.{} MHz", delta_tsc / 1000000, delta_tsc % 1000000); } #endif enable_local_timer(); return true; } void APICTimer::enable_local_timer() { APIC::the().setup_local_timer(m_timer_period, m_timer_mode, true); } void APICTimer::disable_local_timer() { APIC::the().setup_local_timer(0, APIC::TimerMode::OneShot, false); } size_t APICTimer::ticks_per_second() const { return m_frequency; } void APICTimer::set_periodic() { // FIXME: Implement it... VERIFY_NOT_REACHED(); } void APICTimer::set_non_periodic() { // FIXME: Implement it... VERIFY_NOT_REACHED(); } void APICTimer::reset_to_default_ticks_per_second() { } bool APICTimer::try_to_set_frequency([[maybe_unused]] size_t frequency) { return true; } bool APICTimer::is_capable_of_frequency([[maybe_unused]] size_t frequency) const { return false; } size_t APICTimer::calculate_nearest_possible_frequency([[maybe_unused]] size_t frequency) const { return 0; } }